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Abstract

We present a detailed study of the geometric and algebraic properties of the multidimensional
quadrilateral lattice (a lattice whose elementary quadrilaterals are planar; the discrete analog of a
conjugate net) and of its basic reductions. To make this study, we introduce the notions of forward and
backward data, which allow us to give a geometric meaning to theτ -function of the lattice, defined
as the potential connecting these data. Together with the known circular lattice (a lattice whose
elementary quadrilaterals can be inscribed in circles; the discrete analog of an orthogonal conjugate
net) we introduce and study two other basic and independent reductions of the quadrilateral lattice:
the symmetric lattice, for which the forward and backward data coincide, and thed-invariant
lattice, characterized by the invariance of a certain natural frame along the main diagonal. We
finally discuss the Egorov lattice, which is, at the same time, symmetric, circular andd-invariant.
The integrability properties of all these lattices are established using geometric, algebraic and
analytic means; in particular, we present a∂̄ formalism to construct large classes of such lattices.
We also discuss quadrilateral hyperplane lattices and the interplay between quadrilateral point and
hyperplane lattices in all the above reductions. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper [13] we have introduced the notion of multidimensional quadrilateral
lattice (MQL), i.e., a latticexxx : ZN → P

M, N ≤ M, with all its elementary quadrilaterals
planar, which is the discrete analog of a multidimensional conjugate net [9]. Furthermore,
we showed that the planarity constraint (which is a linear constraint) provides a way to
construct the lattice uniquely, once a suitable set of initial data is given.

In this paper we present a detailed study of three basic and independent integrable reduc-
tions of the quadrilateral lattice: the symmetric lattice, the circular lattice and thed-invariant
lattice; we also study the Egorov lattice which is, at the same time, symmetric, circular and
d-invariant. All these reductions satisfy additional geometric properties which are compat-
ible with the planarity constraint of the MQL.

Thesymmetriclattice follows from the observation that one can associate, with a given
quadrilateral lattice, forward and backward data connected through a potential coinciding
with theτ -function of the lattice, and it corresponds to the particular situation in which the
backward and forward rotation coefficients coincide. Thecircular lattice, discrete analog of
an orthogonal net, is instead characterized by the fact that all its elementary quadrilaterals
are inscribed in circles. Thed-invariant lattice is a MQL characterized by the invariance
of a certain natural frame along the main diagonal. TheEgorovlattice, discrete analog of a
Egorov net [2,9], is simultaneously symmetric, circular andd-invariant (forN = M), and
can be equivalently characterized by the fact that a pair of opposite angles of the elementary
quadrilateral consists of right angles.

The geometric properties characterizing the above reductions make use of the connections
between point lattices and hyperplane lattices (lattices in the dual space(PM)∗). In some
cases the connection comes from additional structure in the ambient spaceP

M ; in some
other cases, it is a consequence of the inner symmetry of the lattice. The precise connections
between point and hyperplane lattices corresponding to all the above reductions are also
presented in this paper.

Our presentation reflects the effort of constructing a general theory of the MQL and of
its reductions and therefore the results will not appear in a chronological order of derivation
but rather in a logical order.

Although the research field of integrable discrete geometry is relatively new, the amount of
associated results is already very large and it is often difficult to go through the corresponding
literature, also because many of these results are not even published, having being presented
only during conferences or seminars, or private conversations. A brief but hopefully correct
account of the literature closed to the subject considered in this paper is the following.

The proper discrete analog of a conjugate net on a surface was first proposed by Sauer [32].
The MQL equations were first derived by Bogdanov and Konopelchenko [5] as integrable
discrete analogs of the Darboux equations for conjugate nets, but without any geometric
characterization. The notion of circular lattice was first proposed by Martin et al. [28]
and Nutbourne [30] forN = 2, M = 3, as a discrete analog of surfaces parametrized
by curvature lines (see also [4]); later by Bobenko [3] forN = M = 3 and, finally, for
arbitraryN ≤ M by Ciésliński et al. [8]; subsequently, Konopelchenko and Schief [25]
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have shown that circular lattices inE3 can be conveniently characterized by solutions of
the (2 + 1)-dimensional discrete Sine–Gordon equation [29]. A geometric proof of the
integrability of the circular lattice was first given in [8], while the analytic proof of its
integrability was given in [16] through thē∂ method. The notion of Egorov lattice with its
right angles characterization was found by Schief [33]. In the derivation of the Egorov lattice,
he apparently used the algebraic formulation of the symmetric constraint; this formulation
was restricted to the subclass of circular lattices and its geometric meaning was not given
[35]. He also found thed-invariance of the Egorov lattice (the Killing vector property) [34].
The finite-gap formulations of the circular and Egorov lattices have also recently appeared
in the literature [1,26].

The new results written down in this paper, although already presented in several occa-
sions [14,15,31], are the following:
1. The geometric meaning of theτ -function of the MQL.
2. The theory of integrable hyperplane lattices, and its central role in the reduction theory

of MQL.
3. The algebraic and geometric notions of symmetric andd-invariant lattices as basic and

independent reductions of the MQL.
4. The successful application of the∂̄ reduction method, already used in the case of circular

lattices [16], to all the other reductions.
After this work was completed we were told that the algebraic formulation of a symmetric

quadrilateral lattice was already known to Schief [36].
In the rest of this section we summarize the basic results on quadrilateral lattices and the

known facts on hyperplanes in projective spaces which will be used in the paper. In Section
2 we introduce the “backward” representation of the quadrilateral lattice and we show that
the compatibility between the backward construction and the standard forward construction
leads to the existence of a potential which can be identified with theτ -function of the
lattice. In Section 3 we first introduce the notion of quadrilateral hyperplane lattice; then
we introduce and study the notions of dual, adjoint, conjugate and complementary systems
of point and hyperplane lattices. In Section 4 we study the first integrable reduction, the
symmetric lattice together with its integrability properties. In Section 5 we discuss, in the
same spirit, the second basic reduction, the circular lattice. In Section 6 we define the third
basic reduction, thed-invariant lattice and study its properties. Section 7 is devoted to the
study of the Egorov lattice which is, at the same time, symmetric, circular andd-invariant.
In Section 8 we finally study the integrability properties of all the above lattices from the
point of view of their solvability, making use of ā∂-reduction method recently introduced
in [40] in the continuous case and generalized in [16] to a discrete context.

We finally remark that the equations characterizing the above lattices are potentially rele-
vant also in physics, being integrable discretizations of equations arising in hydrodynamics
[20,21,24,37] and in quantum field theory [10,17,19].

1.1. Quadrilateral point lattices

Consider a multidimensional quadrilateral lattice, i.e., a mappingx : ZN → P
M, N ≤

M, with all the elementary quadrilaterals planar [13]. In the affine representation (in which
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Fig. 1. Definition of the forward data.

the lattice is a mappingExxx : ZN → R
M ) the planarity condition can be formulated in terms

of the Laplace equations (see also [11])

1i1j Exxx = (TiAij )1i Exxx + (TjAji )1j Exxx, i 6= j, i, j = 1, . . . , N, (1.1)

whereTi is the translation operator in thei direction,1i = Ti − 1 and the coefficientsAij

satisfy the MQL equation

1kAij = (TjAjk)Aij + (TkAkj)Aik − (TkAij )Aik, i 6= j 6= k 6= i. (1.2)

It is often convenient to reformulate Eq. (1.1) as a first-order system [13]. We introduce the
suitably scaled tangent vectorsXXXi, i = 1, . . . , N ,

1i Exxx = (TiHi)XXXi, (1.3)

in such a way that thej th variation ofXXXi is proportional toXXXj only (see Fig. 1):

1jXXXi = (TjQij )XXXj , i 6= j. (1.4)

The compatibility condition for the system (1.4) gives the following new form of the MQL
equations:

1kQij = (TkQik)Qkj, i 6= j 6= k 6= i. (1.5)

The scaling factorsHi , called the Lamé coefficients, solve the linear equations

1iHj = (TiHi)Qij , i 6= j, (1.6)

whose compatibility gives Eq. (1.5) again; moreover,

Aij = 1jHi

Hi
, i 6= j. (1.7)

In [13] it was proven that, given12N(N − 1) initial quadrilateral surfaces, the quadrilateral
latticexxx follows uniquely from the planarity constraint. To construct the initial surfaces,
one givesN arbitrary intersecting initial curvesExxx(0)i , i = 1, . . . , N ; the initial(i, j)-surface

is then built uniquely assigning the initial dataA(0)ij , i 6= j , as functions ofni, nj via
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Eq. (1.1). Equivalently, together with theN intersecting initial curves, we can give the
initial data{H(0)

i ,Q
(0)
ij }, meaning that we give the coefficientsH(0)

i (or, equivalently, the

tangent vectorsXXX(0)i ) on theith initial curve and then the dataQ(0)
ij , i 6= j , as functions

of ni, nj . Therefore, the solution of the MQL equations depends onN(N − 1) arbitrary
functions of two variables.

Remark. To make the construction of the lattice possible, in our considerations we as-
sume that we deal with generic lattices, i.e., that the point x and its nearest neighbors
T1x, . . . , TNx are in general position; in consequence, the subspace〈x, T1x, . . . , TNx〉 is
a linear subspace ofPM of maximal possible dimension N.

In this paper we study some distinguished reductions of the MQL which possess additional
geometric properties that once imposed on the initial surfaces “propagate” everywhere
through the construction of the lattice. Since the quadrilateral lattice is integrable, these
reductions will inherit its integrability properties.

In the continuous limit,

1i Exxx ∼ ε
∂

∂ui
= ε∂i, 0< ε � 1, (1.8)

Qij ∼ εβij , (1.9)

the MQL reduces to anN -dimensional conjugate net inRM characterized by the Darboux
equations [9]:

∂kβij = βikβkj, i 6= j 6= k 6= i. (1.10)

1.2. Hyperplanes

In Section 3 we introduce and study the properties of lattices in the dual space, i.e., of
hyperplane lattices. These considerations will turn out to be relevant in the reduction theory
of the quadrilateral lattices when the introduction of additional geometric structure will
allow to establish a direct connection between point lattices and hyperplane lattices.

To make the paper self-contained, in the rest of this section, we summarize some basic
known facts on the algebraic representation of the projective space and of its dual.

Points ofPM are directions (one-dimensional linear subspaces) ofR
M+1 and they can be

represented (up to multiplication by a non-zero scalar factor) by non-zero vectors ofR
M+1.

In a fixed basiseee0, eee1, . . . , eeeM of RM+1, the coordinatesuuu = (u0, u1, . . . , uM)T of such a
vector are called the homogeneous coordinates of the corresponding pointu = [uuu] of the
projective space.

The hyperplanes ofPM areM-dimensional linear subspaces ofRM+1 and they can
be represented (up to multiplication by a non-zero scalar factor) by non-zero co-vectors
of (RM+1)∗ ≡ RM+1. The coordinatesaaa∗ = (a∗

0, a
∗
1, . . . , a

∗
M) of such a co-vector are

called the homogeneous coordinates of the corresponding hyperplanea∗ = [aaa∗], and the
condition that the point with homogeneous coordinatesuuu = (u0, u1, . . . , uM)T belongs to
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the hyperplane represented byaaa∗ = (a∗
0, a

∗
1, . . . , a

∗
M) is given by the linear homogeneous

equation

〈aaa∗|uuu〉 = a∗
0u

0 + a∗
1u

1 + · · · + a∗
Mu

M = 0. (1.11)

Remark (Duality principle). Notice that Eq.(1.11) is “symmetric” in the sense that the
expression “the point u belongs to the hyperplanea∗” can be changed into “the hyperplane
a∗ contains the point u”. Geometrically, all hyperplanes(points of(PM)∗) passing through
a fixed point ofPM form a hyperplane in(PM)∗, which is represented by this point, therefore
((PM)∗)∗ = PM .

By fixing a hyperplanePM−1∞ in PM , called then the hyperplane at infinity, we can
represent the remaining (affine) partAM = PM \ PM−1∞ of the projective space by points
Evvv ∈ RM ; if the hyperplane at infinity is characterized byu0 = 0, then the points of the
affine space can be normalized to(1, u1, . . . , uM)T, andEuuu = (u1, . . . , uM)T.

Hyperplanes inAM can be represented (again, up to a non-zero factor) by non-homogeneous
linear equations as follows:

a∗
0 + a∗

1x
1 + · · · + a∗

Mx
M = 0. (1.12)

The representation can be made unique by affinization of(PM)∗, i.e., by removing from
(PM)∗ hyperplanes passing through a fixed point ofPM . For our purposes we assume that
this point belongs toAM , and we identify it with the origin ofRM . Then the equation of
any hyperplane which does not pass through the origin, i.e.,a∗

0 6= 0, can be normalized to
havea∗

0 = −1. Such a hyperplane can be represented by the co-vectorEaaa∗ ∈ (RM)∗ and
consists of pointsExxx satisfying the equation

〈Eaaa∗|Exxx〉 = a∗
1x

1 + · · · + a∗
Mx

M = 1. (1.13)

If Evvv is a point of the hyperplane represented byEaaa∗, then the parallel (in the standard sense)
hyperplane passing throughtEvvv is represented byt−1Eaaa∗; equivalently, the equation of such
a hyperplane can be written as〈Eaaa∗|Exxx〉 = t . Taking the limit t → ∞, we infer that the
hyperplane at infinityPM−1∞ is represented by the zero co-vectorE000∗

. On the other hand, all the
hyperplanes passing throughE000 ∈ RM are represented by “infinite” co-vectors; equivalently,
the equation of the hyperplane passing throughE000 and parallel to that represented byEaaa∗ can
be written as〈Eaaa∗|Exxx〉 = 0.

Given two hyperplanesa∗ andb∗ represented by the co-vectorsEaaa∗ andEbbb∗
, the equation of

the unique hyperplane passing through the origin and containing their intersectiona∗∩b∗ is

〈Eaaa∗ − Ebbb∗|Exxx〉 = 0. (1.14)

Definition 1.1. Two subspaces of co-dimension 2 are called “co-parallel” if there exists a
hyperplane passing throughE000 and containing them.

Remark. The above notion is dual to the parallelism of two lines in the affine space.
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Fig. 2. Polarity with respect to a sphere.

Corollary 1.2. Two co-dimension2 subspaces obtained by intersection of two pairs of
hyperplanesa∗

i ∩b∗
i , i = 1,2,are co-parallel if the corresponding co-vectorsEaaa∗

i −Ebbb∗
i , i =

1,2, are proportional.

A correlation is a projective mapping between a projective space and its dual

C : PM → (PM)∗.

In the homogeneous description, such a mapping is given by a linear mapping (given
uniquely up to a non-zero scalar factor) between the vector spaceR

M+1 and its dual; if
a∗ = [aaa∗], v = [vvv], anda∗ = C(v), then the correlationC is represented by a matrixCCC
such thataaa∗ = (CvCvCv)T.

Any correlationC defines its adjoint correlation

C∗ : ((PM)∗)∗ = PM → (PM)∗

being represented by the matrixCCCT transposed ofCCC. An important class of correlations is
provided byinvolutory correlations, i.e., correlations identical to their adjoints. Matrices of
such correlations must satisfy the condition thatCCCT = ±CCC.

When the matrix of the correlation is symmetric, then the correlation is calledpolarity;
we denote it byP. The imageP(v) of a pointv = [vvv] ∈ PM is called the polar hyperplane
of v; it consists of pointsx = [xxx] satisfying equation〈PvPvPv|xxx〉 = 0.

Any polarizationP defines the corresponding quadric hypersurfaceQP , which consists
of points belonging to their polar hyperplanes:x ∈ P(x); in the homogeneous description,
the quadric is given by equation〈PxPxPx|xxx〉 = 0.

Example 1.3. Consider the polarization whose quadric is the standard sphere of radius 1
centered at the origin:

QP = SM−1 = {Exxx ∈ EM |Exxx · Exxx = 1}.
Then the polar hyperplane of a pointEvvv is the hyperplane orthogonal toEvvv and passing through
the pointEvvv/(Evvv · Evvv) (see Fig. 2). The polar of the origin is the hyperplane at infinity, therefore
this polarization is an affine mapping, i.e., it maps parallel lines into co-parallel subspaces
(of co-dimension 2).
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2. The backward representation of the quadrilateral lattice

In this section we define the backward dataX̃XXi, H̃i, Q̃ij of the quadrilateral lattice. It
turns out that the relation between the standard forward dataXXXi, Hi, Qij and the backward
data is given in terms of theτ -function, which is one of central objects of the soliton theory.

The backward tangent vectorsX̃XXi and the backward Lamé coefficientsH̃i, i = 1, . . . , N
are defined with the help of the backward difference operator1̃i := 1 − T −1

i :

1̃i Exxx = (T −1
i H̃i)X̃XXi, or 1i Exxx = H̃i(TiX̃XXi), (2.1)

the backward Lamé coefficients are again chosen in such a way (see Fig. 3) that the1̃i

variation ofX̃XXj is proportional toX̃XXi only. We define the backward rotation coefficientsQ̃ij

as the corresponding proportionality factors

1̃iX̃XXj = (T −1
i Q̃ij )X̃XXi, or 1iX̃XXj = (TiX̃XXi)Q̃ij , i 6= j. (2.2)

Comparing Eqs. (1.6) and (2.2) we see immediately that the new functionsQ̃ij satisfy the
MQL equations (1.5) as well. Moreover, the new scaling factorsH̃i satisfy the following
system of linear equations:

1jH̃i = (Tj Q̃ij )H̃j , i 6= j, (2.3)

whose compatibility condition gives again the MQL equations (1.5).
An easy consequence of Eqs. (2.1)–(2.3) is the following, obvious from a geometric point

of view observation.

Proposition 2.1. The vector functionExxx : ZN → R
M representing a quadrilateral lattice

satisfies the backward Laplace equation

1̃i1̃j Exxx = (T −1
i Ãij )1̃i Exxx + (T −1

j Ãji )1̃j Exxx, i 6= j, (2.4)

where, in the notation of this section

Ãij = 1̃j H̃i

H̃i
. (2.5)

Fig. 3. Definition of the backward data.
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The forward and backward rotation coefficientsQij andQ̃ij describe the same latticeExxx from
different points of view, therefore one can expect their interrelation. Indeed, defining the
functionsρi : ZN → R as the proportionality factors betweenXXXi andTiX̃XXi (both vectors
are proportional to1i Exxx):

XXXi = −ρi(TiX̃XXi), TiHi = − 1

ρi
H̃i, i = 1, . . . , N, (2.6)

we have the following proposition.

Proposition 2.2. The forward and backward data of the latticeExxx are related through the
following formulas:

ρjTj Q̃ij = ρiTiQji , (2.7)

and the factorsρi are first potentials satisfying equations

Tjρi

ρi
= 1 − (TiQji )(TjQij ), i 6= j. (2.8)

Proof. Using Eqs. (1.4), (2.2) and (2.6), we obtain

XXXi = −ρiTiX̃XXi = ρi

Tjρi
(1 − (TiQ̃ji )(Tj Q̃ij ))(XXXi + (TjQij )XXXj)− ρi

ρj
(TiQ̃ji )XXXj ,

which, by comparing coefficients in front of the vectorsXXXi, XXXj , leads to Eqs. (2.7) and
(2.8). �

Remark. SinceQij and Q̃ij are both solutions of the MQL equations(1.5), then Eqs.
(2.6)–(2.8)describe a special symmetry transformation of Eq.(1.5), first found in [25]
without any associated geometric meaning.

The RHS of Eq. (2.8) is symmetric with respect to the interchange ofi andj , which
implies the existence of a potentialτ : ZN → R, such that

ρi = Tiτ

τ
, (2.9)

therefore, Eq. (2.8) defines the second potentialτ :

(TiTj τ )τ

(Tiτ )(Tj τ )
= 1 − (TiQji )(TjQij ), i 6= j. (2.10)

The potentialτ connecting the forward and backward data

Tj (τQ̃ij ) = Ti(τQji ), (2.11)

Ti(τX̃XXi) = τXXXi, (2.12)

τH̃i = Ti(τHi) (2.13)

is the famousτ -functionof the quadrilateral lattice.
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Corollary 2.3 (Theτ -function representation of the MQL equations).Defineτij by

τij = τQij , (2.14)

then Eq.(2.8)can be rewritten as

(TiTj τ )τ = (Tiτ )Tj τ − (Tiτji )Tj τij , (2.15)

and the MQL equations(1.5) take the form

(Tkτij )τ = (Tkτ )τij + (Tkτik)τkj. (2.16)

Remark. Theτ -function representation of the MQL equations was found in[17] using the
Miwa transformation of theτ -function representation of the Darboux equations.

We notice that, for a given latticeExxx, the forward data{XXXi,Qij } are defined up to rescaling
by functionsai(ni),

XXXi → aiXXXi, TiHi → 1

ai
TiHi, TjQij → ai

aj
TjQij , (2.17)

expressing the freedom in the definition of the vectorsXXX
(0)
i on the initial curves. An analo-

gous freedom exists for the backward data

TiX̃XXi → 1

bi
TiX̃XXi, H̃i → biH̃i, Tj Q̃ij → bi

bj
Tj Q̃ij . (2.18)

The corresponding rescaling ofρi andτ is, therefore, given by

ρi → aibiρi, τ → τ

N∏
i=1

ci(ni), (2.19)

where

Tici

ci
= aibi . (2.20)

Finally, we remark that the product(TiQji )(TjQij ), which appears in the definition of the
τ -function, is the ratio of the areas of the two affine parallelogramsP(1iXXXj ,1jXXXi) and
P(XXXi,XXXj) (see Fig. 4).

Unlike the definitions of the forward and backward rotation coefficients, this product
is invariant with respect to their possible redefinitions given by Eq. (2.17). It can be seen
expressing the product, using Eq. (1.7), in terms of the dataAij as follows:

(TiQji )(TjQij ) = (TiAij )(TjAji )

(TiAij + 1)(TjAji + 1)
. (2.21)

Observe finally that Eq. (2.7) leads to

(TiQji )(TjQij ) = (TiQ̃ji )(Tj Q̃ij ), (2.22)
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Fig. 4. Areas of two parallelograms.

which implies that the discussed product quantity is also the ratio of the areas of the backward
parallelogramsP(1̃iTiTjX̃XXj , 1̃jTiTjX̃XXi) andP(TiTjX̃XXj , TiTjX̃XXi).

3. Hyperplane lattices

Consider a latticeyyy∗ : ZN → (PM)∗, N ≤ M, in the space of hyperplanes ofPM ,
which we call thehyperplane lattice. The space(PM)∗, called also dual space toPM , has
a natural projective structure and a priori one expects that the algebraic description of the
quadrilateral lattices in the dual space be the same like that of quadrilateral point lattices and,
therefore, the considerations of the previous sections can be applied to hyperplane lattices
without essential modifications. However, this section is devoted to investigate hyperplane
lattices from a geometric point of view and to make clear the geometric content of their
algebraic description.

3.1. Quadrilateral hyperplane lattices

The basic property of quadrilateral lattices, i.e., the planarity of their elementary quadri-
laterals, when applied to hyperplane lattices, can be formulated as follows.

Definition 3.1. The hyperplane latticeyyy∗ : ZN → (PM)∗ is quadrilateral if, for any
i, j = 1, . . . , N, i 6= j , the hyperplaneTiTjy∗ contains the subspacey∗ ∩ Tiy∗ ∩ Tjy∗.

To explain this definition notice that if the hyperplane lattice is given in homogeneous
coordinates by the functionyyy∗ : ZN → (RM+1)∗ \ {000∗}, then Definition 3.1 states that the
four co-vectorsTiTjyyy∗, Tiyyy∗, Tjyyy∗, andyyy∗ are linearly dependent. IfTiyyy∗, Tjyyy∗, yyy∗ are
linearly independent, then the co-vectorTiTjyyy∗ representing the hyperplaneTiTjy∗ is a
linear combination of the co-vectorsyyy∗, Tiyyy∗ andTjyyy∗,

TiTjyyy
∗ = αTiyyy

∗ + βTjyyy
∗ + γyyy∗. (3.1)

This equation can be transformed into the Laplace equation

1i1jyyy
∗ = (TiA

∗
ij )1iyyy

∗ + (TjA
∗
ji )1jyyy

∗ + C∗
(ij)yyy

∗, i 6= j. (3.2)
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In the affine gauge, the coefficientsα, β andγ of the decomposition (3.1) are subjected to
the constraint

α + β + γ = 1, (3.3)

and Eq. (3.2) reduces to

1i1j Eyyy∗ = (TiA
∗
ij )1i Eyyy∗ + (TjA

∗
ji )1j Eyyy∗

, i 6= j. (3.4)

Remark. In our considerations we always assume we deal with generic lattices, i.e., that
the hyperplaney∗ and its forward neighborsT1y

∗, . . . , TNy∗ (and backward neighbors
T −1

1 y∗, . . . , T −1
N y∗) are in general position, i.e., their equations are linearly independent.

In consequence, the intersectiony∗ ∩ T1y
∗ ∩ · · · ∩ TNy∗ (andy∗ ∩ T −1

1 y∗ ∩ · · · ∩ T −1
N y∗)

is a linear subspace ofPM of co-dimension N(of dimensionM −N ).

Example 3.2. Given a two-dimensional quadrilateral latticex in the three-dimensional
projective space, define the latticey∗ of the hyperplanes passing throughx, T1x andT2x.
Because of the planarity of the elementary quadrilaterals ofx, it is easy to see that the
four hyperplanesy∗, T1y

∗, T2y
∗ andT1T2y

∗ intersect in the pointT1T2x. Therefore, the
(hyper)plane latticey∗ is quadrilateral.

Example 3.3. Correlations map quadrilateral point lattices into quadrilateral hyperplane
lattices.

3.2. Dual systems

We first recall that a quadrilateral latticeExxx′ is called parallel to the quadrilateral latticeExxx
[18] (or obtained fromExxx via the Combescure transformation), if the tangents to both lattices
are parallel in the corresponding points:1i Exxx′ ∼ 1i Exxx. In consequence, the scaled tangent
vectorsXXX′

i of the latticeExxx′ can be chosen to be equal to those of the latticeExxx : XXX′
i = XXXi ;

then the rotation coefficients of both lattices coincide as well:Qij = Q′
ij , and the Lamé

coefficientsHi andH ′
i are solutions of the same equation.

In this section we will learn how to construct quadrilateral hyperplane lattices using
systems of parallel quadrilateral point lattices.

Definition 3.4. Consider a system ofM parallel point lattices inAM Exxx(k), k = 1, . . . ,M,
whose corresponding vectors are linearly independent. Denote byEyyy∗

(k), k = 1, . . . ,M, the
system of hyperplane lattices uniquely defined by the properties thatEyyy∗

(k) passes through
Exxx(k) and is spanned by the vectorsExxx(l), l 6= k, i.e.,

〈Eyyy∗
(k)|Exxx(l)〉 = δkl. (3.5)

We call such a system of hyperplane lattices thedual systemto the system of parallel point
latticesExxx(k).
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The aim of this section is to prove that the hyperplane latticesEyyy∗
(k) are quadrilateral hyper-

plane lattices.

Definition 3.5. Fix a basis{Eeeek}Mk=1 in the ambient spaceRM and arrange the parallel system
of point lattices in thematrix��� of the system:

��� = (Exxx(1), . . . , Exxx(M)), (3.6)

equivalently, the matrix��� represents a linear operator

��� =
M∑
k=1

Exxx(k) ⊗ Eeee∗k,

where{Eeee∗k}Mk=1 is the dual basis of{Eeeek}Mk=1, i.e.,〈Eeee∗k |Eeeel〉 = δkl.

Corollary 3.6. The components of the dual systemEyyy∗
(k) in the basis{Eeee∗k}Mk=1 are given by

the rows of the matrix���−1.

Let us arrange the coefficientsHi(k), i = 1, . . . , N, k = 1, . . . ,M, into the row-vectors

XXX∗
i = (Hi(1), . . . , Hi(M)), XXX∗

i =
M∑
k=1

Hi(k)Eeee∗k,

thenXXX∗
i , i = 1, . . . , N , form a (co)vector valued solution of the adjoint linear problem

(1.6) and the matrix��� can be found from equations

1i��� = XXXi ⊗ (TiXXX
∗
i ). (3.7)

It was shown in [27] that the matrix��� plays a relevant role in the theory of transformations
of quadrilateral lattices.

The following theorem, which contains, as particular cases, all the classical transforma-
tions of a quadrilateral lattice [18] was proven in [27].

Theorem 3.7. LetQij , XXXi, XXX
∗
i and��� be defined as above; then the following functions

Q′
ij = Qij − 〈XXX∗

j |���−1|XXXi〉 (3.8)

solve the MQL equations, the vectorsXXX′
i = ���−1XXXi, XXX

∗′
i = XXX∗

i ���
−1 are solutions of the

linear systems(1.4) and (1.6)for Q′
ij , and the corresponding potential

1i���
′ = XXX′

i ⊗ (TiXXX
∗′
i ) (3.9)

is given by

���′ = C −���−1, (3.10)

where C is a constant operator.



A. Doliwa, P.M. Santini / Journal of Geometry and Physics 36 (2000) 60–102 73

Denote byExxx∗
(k) the rows of���, then

��� =
M∑
k=1

Eeeek ⊗ Exxx∗
(k).

Lemma 3.8. The rowsExxx∗
(k) of the matrix��� represent a system of co-parallel quadrilateral

hyperplane lattices, which we call the adjoint system toExxxk.

Proof. Let us rewrite Eq. (3.7) in a backward form

1̃i��� = XXX∗
i ⊗ (T −1

i XXXi), (3.11)

which gives

1̃i Exxx∗
(k) = (T −1

i H ∗
i(k))XXX

∗
i , (3.12)

whereH ∗
i(k) is thekth component of the vectorXXXi . Comparing Eqs. (1.4), (2.1) and (2.3)

we infer that the co-vectorsExxx∗
(k) satisfy the backward Laplace equations

1̃i1̃j Exxx∗
(k) = (T −1

i Ã∗
ij(k))1̃i Exxx∗

(k) + (T −1
j Ã∗

ji(k))1̃j Exxx∗
(k), i 6= j, (3.13)

where

Ã∗
ij(k) =

1̃jH
∗
i(k)

H ∗
i(k)

,

and therefore (see Proposition 2.1) also the forward Laplace equations.
Finally, since1̃i Exxx∗

(k) ∼ 1̃i Exxx∗
(l), then the corresponding co-dimension 2 subspacesx∗

(k) ∩
T −1
i x∗

(k) andx∗
(l) ∩ T −1

i x∗
(l) of hyperplane lattices are co-parallel in the sense of Definition

1.1. �

Remark. Given the parallel systemExxx(k), k = 1, . . . ,M, the corresponding adjoint system
Exxx∗
(k) is given up to a fixed basis used to define���; on the contrary, the dual system of

hyperplane latticesEyyy∗
(k) is given uniquely.

Corollary 3.9. Notice that the forward rotation coefficients of the systemExxx(k) are the
backward rotation coefficients of the systemExxx∗

(k) : Qij = Q̃∗
ij .

Combining the above lemma with Theorem 3.7, we get the following theorem.

Theorem 3.10. The hyperplane latticesEyyy∗
(k) of the dual system to the system of parallel

quadrilateral point latticesExxx(k) are co-parallel quadrilateral hyperplane lattices.



74 A. Doliwa, P.M. Santini / Journal of Geometry and Physics 36 (2000) 60–102

3.3. The adjoint and conjugate lattices

Definition 3.11. The quadrilateral point latticeExxx : ZN → A
M and the quadrilateral hyper-

plane latticeExxx∗ : ZN → (AM)∗ are called adjoint if the forward rotation coefficients of the
point lattice are backward rotation coefficients of the hyperplane lattice.

Corollary 3.12. Equivalently, the forward rotation coefficients of the hyperplane lattice
are backward rotation coefficients of its adjoint point lattice.

Definition 3.13. The point latticex : ZN → P
M and the hyperplane latticey∗ : ZN →

(PM)∗ are called conjugate if there exists a one-to-one correspondence between both lattices
such that the pointsx of the point lattice belong to the corresponding hyperplanesy∗ of the
hyperplane lattice.

Corollary 3.14. Observe that this notion is self-dual in the sense of the standard duality
betweenPM = ((PM)∗)∗ and(PM)∗.

Remark. We are interested only in a situation in which x is a quadrilateral point lattice
andy∗ is a quadrilateral hyperplane lattice.

The notion of conjugacy between point lattices and hyperplane lattices is the natural
generalization of the notion of conjugacy between point lattices and rectilinear congruences
(line lattices with any two neighboring lines coplanar) introduced in [18]. As it was also
shown in [18], the lattices parallel toExxx describe transversal congruences conjugate to the
quadrilateral point latticex. Moreover, the tangent congruences can also be obtained in this
way via singular limits.

Corollary 3.15. Given a quadrilateral point lattice x inPM and given(M − 1) linearly
independent congruences conjugate to x, then the hyperplane latticey∗ conjugate to x and
spanned by the lines of these congruences is quadrilateral.

3.4. The complementary lattice

The linear system (1.4) describes the variation of the normalized tangent vectorsXXXi of
a quadrilateral point lattice in directionsj 6= i, and leads to the MQL equations (1.5). In
this section we study the variation of the vectorsXXXi in the correspondingith directions of
the lattice. Discussion of such variations naturally leads to the definition of a hyperplane
lattice, which will be called thecomplementarylattice.

Consider the quadrilateral latticeExxx : ZN → R
M with the given set of tangent vec-

torsXXXi, i = 1, . . . , N , and the corresponding set of the Lamé and rotation coefficients
Hi, Qij , i, j = 1, . . . , N , satisfying Eqs. (1.3)–(1.6). Let us findM − N new solutions
Qai, a = N + 1, . . . ,M, i = 1, . . . , N , of the adjoint linear system (1.6), i.e.,

1iQaj = (TiQai)Qij , (3.14)
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and let us defineM −N vectorsXXXa, a = N + 1, . . . ,M, via an analog of Eq. (1.3):

1iXXXa = (TiQai)XXXi. (3.15)

Remark. The vectorsXXXa, a = N+1, . . . ,M, are the Combescure transforms of the lattice
Exxx, but it was not accidental that we gave to Eqs.(3.14) and (3.15)the form of the Darboux
equations(1.5)and of the linear problem(1.4).

When the full set of vectorsXXXk, k = 1, . . . ,M, is linearly independent, we obtain, in each
point of the latticeExxx, a basis of the whole spaceRM ; this type of basis along a quadrilateral
lattice has been considered already in [16] and can be called theextended basisalong the
lattice. ByỸYY

∗
k, k = 1, . . . ,M, we denote the dual basis in(RM)∗:

〈ỸYY ∗
k |XXX`〉 = δk`, k, ` = 1, . . . ,M. (3.16)

The linear system (1.4) describes the decomposition ofTiXXXj , i 6= j ; let us decompose
TiXXXi in the full basis

1iXXXi = P̃ ∗
i XXXi −

M∑
k 6=i,k=1

P̃ ∗
ikXXXk. (3.17)

We will study properties of the coefficients̃P ∗
i , P̃

∗
ij and their relation to previously intro-

duced objects.

Proposition 3.16. The vectors̃YYY
∗
k satisfy equations

1iỸYY
∗
k = (TiỸYY

∗
i )P̃

∗
ik, i 6= k, i = 1, . . . , N, k = 1, . . . ,M, (3.18)

1iỸYY
∗
i = −(TiỸYY ∗

i )P̃
∗
i −

M∑
k 6=i,k=1

(TiỸYY
∗
k)(TiQki), i = 1, . . . , N. (3.19)

Proof. Assume a decomposition of1iỸYY
∗
` in the basisTiỸYY

∗
`, ` = 1, . . . ,M,

1iỸYY
∗
` =

M∑
k=1

0ki`(TiỸYY
∗
k), (3.20)

where

0ki` = 〈1iỸYY ∗
` |TiXXXk〉, i = 1, . . . , N, k, ` = 1, . . . ,M.

Using Eq. (3.16), we obtain that

0ki` = −〈ỸYY ∗
` |1iXXXk〉, (3.21)

which, together with Eqs. (1.4), (3.16)–(3.18), concludes the proof. �
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Corollary 3.17. Eq. (3.18)can be split into the standard backward linear problem

1iỸYY
∗
j = (TiỸYY

∗
i )P̃

∗
ij , i 6= j, i = 1, . . . , N, (3.22)

and the backward linear equations for the supplementary co-vectors

1iỸYY
∗
a = (TiỸYY

∗
i )P̃

∗
ia, i = 1, . . . , N, a = N + 1, . . . ,M. (3.23)

The compatibility condition of these equations gives the Darboux equations for the backward
rotation coefficientsP̃ ∗

ij , i 6= j = 1, . . . , N ,

1kP̃
∗
ij = (TkP̃

∗
ik)P̃

∗
kj, k 6= i, j = 1, . . . , N, (3.24)

and the supplementary backward linear equations

1iP̃
∗
ja = (TiP̃

∗
ij )P̃

∗
ia, i 6= j = 1, . . . , N, a = N + 1, . . . ,M. (3.25)

Corollary 3.18. The compatibility of Eqs.(3.18)and(3.19)gives

P̃ ∗
i = TiQii − P̃ ∗

ii , i = 1, . . . , N, (3.26)

whereQii (and similarly P̃ ∗
ii ) are potentials defined in[16] for any solution of the MQL

system by the equations

1jQii = (TjQij )Qji , 1j P̃
∗
ii = (Tj P̃

∗
ij )P̃

∗
ji , j 6= i. (3.27)

Moreover, from the same compatibility, we obtain the following equation:

1iQij + 1̃j P̃
∗
ij − P̃ ∗

i Qij + P̃ ∗
ij (T

−1
j P̃ ∗

j )+
M∑

k 6=i,j ;k=1

P̃ ∗
ikQkj = 0, i 6= j. (3.28)

To make the above considerations symmetric, we define a hyperplane lattice which has
the vectorsỸYY

∗
i , i = 1, . . . , N , as normalized backward tangent vectors, andP̃ ∗

ij , i 6= j =
1, . . . , N , as backward rotation coefficients.

Definition 3.19. Given the quadrilateral latticeExxx : ZN → R
M together with its extended

frameXXXk and its dualỸYY k, k = 1, . . . ,M, define thecomplementary latticeof Exxx as via
solution of the following compatible equations:

1i Eyyy∗ = (TiỸYY
∗
i )F̃

∗
i , i = 1, . . . , N, (3.29)

whereF̃ ∗
i , i = 1, . . . , N , is a solution of the system (3.25), interpreted now as the adjoint

of the linear system (3.22):

1j F̃
∗
i = (Tj P̃

∗
ji )F̃

∗
j , i 6= j = 1, . . . , N. (3.30)

Remark. The additional vectors̃YYY
∗
a and functionsP̃ ∗

ia, a = N + 1, . . . ,M play a role
similar to that ofXXXa andQai.

By simple calculation one can obtain the following result.



A. Doliwa, P.M. Santini / Journal of Geometry and Physics 36 (2000) 60–102 77

Proposition 3.20. The functionsvk = 〈Eyyy∗|XXXk〉, k = 1, . . . ,M, satisfy equations

1ivk = (TiQki)vi, k 6= i, (3.31)

1ivi = F̃ ∗
i + P̃ ∗

i vi −
∑
k 6=i
P̃ ∗

ikvk. (3.32)

Similarly, functions̃v∗
k = 〈ỸYY ∗

k |Exxx〉, k = 1, . . . ,M satisfy equations

1iṽ
∗
k = (Ti ṽ

∗
i )P̃ik, k 6= i, (3.33)

1iṽ
∗
i = (TiHi)− P̃ ∗

i (Ti ṽ
∗
i )−

∑
k 6=i
(TiQki)ṽ

∗
k . (3.34)

Finally, we present a theorem which can be proved by simple algebra using formulas of
Corollaries 3.17 and 3.18, and which contains a geometric characterization of the comple-
mentary lattice.

Theorem 3.21. Consider the quadrilateral latticeExxx with the extended frameXXXk, k =
1, . . . ,M, and consider a scalar solutionvk of the extended linear system(3.31).The hy-
perplane latticeEyyy∗ = ∑M

k=1vkỸYY
∗
k , whose hyperplanes pass through the M points(1/vk)XXXk,

is a complementary lattice ofExxx. Its backward Lamé coefficients̃F ∗
i , i = 1, . . . , N , can be

obtained via formulas(3.32).

Remark. In the continuous limit, forN = M = 3, and with the identification of planes in
E

3 as points(via polarity), our complementary hyperplane lattices reduce to the “systèmes
complémentaires d’un système conjugué” considered by Darboux[9, Chapter III].

4. The symmetric lattice

Definition 4.1. A quadrilateral latticeExxx is symmetriciff its forward rotation coefficients
are its backward rotation coefficients as well, i.e.,

Q̃ij = Qij . (4.1)

The considerations of Section 2 imply the following characterization.

Proposition 4.2. A quadrilateral lattice is symmetric iff, for a given set of rotation coeffi-
cientsQij , there exists aτ -function of the lattice such that

Ti(τQji ) = Tj (τQij ), i 6= j, (4.2)

or equivalently, in terms of the corresponding first potentialsρi ,

ρiTiQji = ρjTjQij . (4.3)
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Remark. Due to Eqs.(2.17)–(2.19),the above definition is independent of the particular
choice of the rotation coefficientsQij .

It turns out to the following proposition.

Proposition 4.3. The symmetric lattice is an integrable reduction of the quadrilateral
lattice.

Proof. Recall that, from a geometric point of view, the integrability of a reduction means
that if the reduction condition is satisfied on the initial surfaces, then it must propagate in
the construction of the lattice.

As it was shown in [13] the solutionQij of the MQL equations (1.5) is fixed by the

values of the rotation coefficientsQ(0)
ij on the initial surfaces. Therefore, ifQ(0)

ij = Q̃
(0)
ij on

the initial surfaces, then they are equalQij = Q̃ij in the whole lattice, since the backward
rotation coefficientsQ̃ij satisfy the same equations asQij .

The algebraic content of this result is instead expressed by the following equation:

TkC
S
ij = CS

ij + (TkQjk)C
S
ik − (TkQik)C

S
jk, i 6= j 6= k, (4.4)

where

CS
ij := ρiTiQji − ρjTjQij . (4.5)

Eq. (4.4) is a simple consequence of the MQL equations (1.5) and of Eq. (2.8). Again we
see that if the constraint (4.2) is satisfied on the initial surfaces (the RHS of Eq. (4.4) is
zero), then it propagates transversally through the whole lattice (the LHS of Eq. (4.4) is
zero). �

There exists an interesting geometric characterization of the symmetric lattice, which
follows from the interpretation of the conditioñQij = Qij .

Lemma 4.4. The forward and backward rotation coefficients describing an elementary
quadrilateral {Exxx, Ti Exxx, Tj Exxx, TiTj Exxx} are equal if and only if the parallelogramsP(TiX̃XXi,
TjX̃XXj ) andP(1iXXXj ,1jXXXi) of the quadrilateral are similar.

Proof. The quadrilateral with the initial vertex is described by the following rotation coef-
ficients:TiQji , TjQij , TiQ̃ji andTj Q̃ij connected by Eq. (2.7). Since

1iXXXj = −(TiQji )ρiTiX̃XXi, (4.6)

then the parallelogramsP(TiX̃XXi, TjX̃XXj ) andP(1iXXXj ,1jXXXi) are similar (see Fig. 5) if and
only if

ρj (TjQij ) = ρi(TiQji ), (4.7)

which means, due to (2.7), that the backward and forwardQ’s are equal. �
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Fig. 5. Similarity of two parallelograms.

Proposition 4.5. A quadrilateral lattice is symmetric iff, for a given set of the forward
tangent vectorsXXXi of the lattice, there exists a complementary set of the backward tangent
vectorsX̃XXi such that the parallelogramsP(TiX̃XXi, TjX̃XXj ) andP(1iXXXj ,1jXXXi) are similar.

Remark. Due to Eqs.(2.17)–(2.19)the above characterization of the symmetric lattice is
independent of a particular choice of the vectorsXXXi .

Integrability of the symmetric lattice can be formulated as follows.

Corollary 4.6. If the system of initial quadrilateral surfaces admits a compatible set of
forward–backward data such thatP(TiX̃XXi, TjX̃XXj ) andP(1iXXXj ,1jXXXi) are similar, then
the similarity of the parallelograms holds in the whole quadrilateral lattice.

Remark. Notice that in order to define the symmetric lattice, we need to know what similar
parallelograms are.

The solution of the MQL equations for anN -dimensional symmetric lattice depends on(
N

2

)
arbitrary functions of two variables, i.e., one-half of the arbitrary functions parametrizing
the solution of the MQL equations for genericN -dimensional quadrilateral lattice (see
Section 1.1). Given a symmetric lattice equipped with a compatible set of forward and
backward data, denote the similarity factor between the parallelogramsP(TiX̃XXi, TjX̃XXj ) and
P(1iXXXj ,1jXXXi) by σ(ij) = σ(ji),

1iXXXj = σ(ij)TiX̃XXi, 1jXXXi = σ(ij)TjX̃XXj , i 6= j, (4.8)

then

σ(ij) = −ρiTiQji = −ρjTjQij . (4.9)

Therefore, to construct the initial(i, j)-surface of a symmetric lattice, one gives two arbitrary
intersectingi-andj -curves and, on them, the tangent vectorsXXX

(0)
i , XXX

(0)
j and the factors

ρ
(0)
i , ρ

(0)
j ; one finally givesσ(ij) = σ(ji) as functions of(ni, nj ).
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The descriptions of the symmetric lattice presented above are not explicit. Indeed they
involve statements about the existence of suitable potentials. There exists, however, another
characterization of the symmetric lattice in terms of the forward rotation coefficients only.

Theorem 4.7. A quadrilateral lattice is symmetric iff, for different indicesi, j, k, its rotation
coefficients satisfy the following constraint:

(TiQji )(TjQkj)(TkQik) = (TjQij )(TiQki)(TkQjk). (4.10)

In the proof we will use two simple facts (see Eqs. (4.11), (4.12) and (4.15)) valid for a
generic quadrilateral lattice.

For a given set of the compatible forward and backward rotation coefficientsQij andQ̃ij ,
define functionsRij as

Rij = TjQij

Tj Q̃ij
, (4.11)

then from Eq. (2.7) it follows that

Rij = 1

Rji
. (4.12)

The MQL equations (1.5) can be written as

TkTjQij = TjQij + (TkTjQik)(TjQkj), (4.13)

which implies

TkTjQik = TkTjQij − TjQij

TjQkj
. (4.14)

Interchanging the indicesj andk in the second equation and eliminatingTkTjQij , we obtain

TkTjQik

TkQik
= 1 + (TkQjk)(TjQij )/TkQik

1 − (TjQkj)(TkQjk)
. (4.15)

Proof. The implication (4.3)⇒(4.10) is obvious. Let us concentrate on the opposite im-
plication.

Let us start from any set of backward rotation coefficientsQ̃ij related withQij via
Eqs. (2.6) and (2.7), the condition (4.10) implies

(TkQjk)(TjQij )

TkQik
= (TkQ̃jk)(Tj Q̃ij )

TkQ̃ik
, (4.16)

which, together with (4.15) and with the corresponding formula satisfied by the backward
rotation coefficientsQ̃ij , gives, forj different fromi andk,

TjRik = Rik, (4.17)



A. Doliwa, P.M. Santini / Journal of Geometry and Physics 36 (2000) 60–102 81

i.e.,Rik is a function ofni andnk only. This together with condition (4.10) written in terms
of Rij as

RijRjkRki = 1 (4.18)

and with Eq. (4.12) implies the existence of functionsai(ni) such that

Rij (ni, nj ) = ai(ni)

aj (nj )
. (4.19)

We use the functionsai to redefine the potentialsρi and obtain new backward rotation
coefficientsQ̃ij satisfyingQij = Q̃ij . �

The above characterization of the symmetric lattice works only when the dimension of
the lattice is greater than 2. In the following proposition we present an analogous criterion
for N = 2, which can be useful, e.g., to check directly if the initial quadrilateral surfaces
are symmetric.

Proposition 4.8. A two-dimensional quadrilateral lattice is symmetric iff the function

rij = TjQij

TiQji
, i 6= j, (4.20)

satisfies equation

(TiTj rij )rij

(Tirij )(Tj rij )
= Ti(1 − TiQjiTjQij )

Tj (1 − TiQjiTjQij )
. (4.21)

Proof. The implication from (4.3) to (4.21) is trivial. To prove that the condition (4.21) is
sufficient, we notice that, in terms ofRij , it can be rewritten as

(TiTjRij )Rij = (TiRij )(TjRij ), (4.22)

which leads again to

Rij (ni, nj ) = ai(ni)

aj (nj )
. (4.23)

�

Remark. In order to check the symmetry condition for the initial surfaces we use the
criterion (4.21)supplemented by(4.10)in the points where the initial surfaces meet.

As we have anticipated, the constraints discussed in this paper allow one to establish a
connection between quadrilateral point lattices and their duals, the quadrilateral hyperplane
lattices. The following proposition describes this connection in the case of the symmetry
constraint.

Proposition 4.9. Given a system of parallel quadrilateral lattices{Exxx(k)}Mk=1 and the asso-
ciated matrix��� defined with respect to an orthonormal basis{Eeeek}Mk=1, Eeeek · Eeeel = δkl, then
the following properties are equivalent.
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1. The matrix��� of the system is symmetric:

��� =���T. (4.24)

2. The polar hyperplaneP(Exxx(k)) of the point latticeExxx(k) coincides with the hyperplane
lattice Exxx∗

(k):

P(Exxx(k)) = Exxx∗
(k), k = 1, . . . ,M. (4.25)

3. The latticesExxx(k), k = 1, . . . ,M, are symmetric. Furthermore, the associated tangent
vectorsXXXi andXXX∗

i are related in the following way:

XXXT
i = ρi(TiXXX

∗
i ), i = 1, . . . , N. (4.26)

Proof. (1) ⇔ (2): The equivalence of (1) and (2) follows immediately from the definitions
of the potential matrix� and of the polar transformationP.

(1) ⇒ (3). The application of1i to Eq. (4.24) gives the equations

XXXi ⊗ TiXXX
∗
i = TiXXX

∗T
i ⊗XXXT

i , (4.27)

which imply equationsXXXT
i = γiTiXXX

∗
i for some proportionality factor functionsγi . The

linear problem (1.4) and its adjoint (1.6) satisfied byXXXi andXXX∗
i imply that γi satisfy

Eq. (2.8) (which allows to identifyγi with ρi) and lead to the symmetry condition (4.2).
(3) ⇒ (1): Following a similar strategy, one can show that

1i(���−���T) = 0, i = 1, . . . , N, (4.28)

which implies (4.24) up to some constant of integration. �

Corollary 4.10. A quadrilateral latticeExxx is symmetric iff it is adjoint to its own polar.

Remark. In the continuous limit(1.9), the symmetric quadrilateral lattice reduces to a
symmetric conjugate net, for which the rotation coefficientsβij satisfying the Darboux
equations(1.10)are symmetric:

βij = βji . (4.29)

In fact, one should allow for the less restrictive condition

βij (u) = ai(ui)

aj (uj )
βji (u), (4.30)

which gives(4.29)after an admissible rescaling of the data.
The continuous limit of the criterion(4.10)

βijβjkβki = βjiβkjβik (4.31)

is equivalent to(4.30).
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5. The circular lattice

The discrete analog of anN -dimensional orthogonal system of coordinates is the circular
lattice.

Definition 5.1. A quadrilateral lattice is circular if and only if any elementary quadrilateral
is inscribed in a circle.

An elementary characterization of circular quadrilaterals states that, if a circular quadri-
lateral is convex, then the sum of its opposite angles isπ ; when the quadrilateral is skew,
then its opposite angles are equal. This leads to a convenient characterization of a circular
lattice [16].

Proposition 5.2. A quadrilateral lattice is circular if and only if

cos∠(XXXi, TiXXXj)+ cos∠(XXXj , TjXXXi) = 0, (5.1)

or equivalently,

XXXi · TiXXXj +XXXj · TjXXXi = 0, i 6= j. (5.2)

It turns out to [8,16] give the following propostion.

Proposition 5.3. The circular lattice is an integrable reduction of the quadrilateral
lattice.

Proof. The proof consists in showing that the circularity property is an admissible con-
straint for the quadrilateral lattice, i.e., once imposed on the initial surfaces, it propagates
transversally through the lattice. This was shown in [8] using purely geometric means. The
algebraic proof is instead based on the following formula:

TkC
◦
ij = C◦

ij + (TiTkQjk)C
◦
ik + (TjTkQik)C

◦
jk, i 6= j 6= k 6= i, (5.3)

where

C◦
ij := XXXi · TiXXXj +XXXj · TjXXXi, i 6= j, (5.4)

which is a direct consequence of Eqs. (1.4) and (1.5). We see that if the circularity con-
straint (5.2) is satisfied on the initial surfaces (the RHS of (5.3) is zero), then it propagates
transversally through the lattice (the LHS of (5.3) is zero). �

Corollary 5.4.
1. The circularity constraint(5.2) implies the following formula[16] :

Ti |XXXj |2
|XXXj |2 = 1 − (TiQji )(TiQji ), (5.5)
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which, compared with Eqs.(2.8)–(2.10),allows to fix, without loss of generality, the
backward formulation of the circular lattice in the following way:

|XXXi |2 = ρi = Tiτ

τ
⇒ |TiX̃XXi |2 = 1

ρi
= τ

Tiτ
. (5.6)

2. The circularity constraint(5.2), written in terms of the backward data of the lattice,
reads as follows:

C̃◦
ij := X̃XXi · T −1

i X̃XXj + X̃XXj · T −1
j X̃XXi = 0. (5.7)

Proof.
1. Eq. (5.6) is a straightforward consequence of Eq. (5.2) and has been found in [16].
2. Eq. (5.7) follows from the equalities

C◦
ij = ρiρj (2(TiX̃XXi) · (TjX̃XXj )+ (TiQ̃ji )|TjX̃XXj |2 + (Tj Q̃ij )|TiX̃XXi |2)

= ρiρj (1 − (TiQji )(TjQij ))TiTj C̃
◦
ij .

The first equality follows from rewritingC◦
ij in terms of the backward data; the second

equality follows from equations

TiTjX̃XXi = (1 − (TiQji )(TjQij ))
−1(TiX̃XXi + (TiQ̃ji )TjX̃XXj ), i 6= j, (5.8)

which is a straightforward consequence of (2.2). �

Other two convenient characterizations of the circular lattice are contained in the follow-
ing result found in [25] and explained geometrically in [12].

Proposition 5.5. A quadrilateral latticeExxx is circular iff the scalars

vi := (Ti Exxx + Exxx) ·XXXi, i = 1, . . . , N (5.9)

solve the linear system(1.4)or, equivalently, iff the function|Exxx|2 (the square of the norm of
Exxx) satisfies the Laplace equation(1.1)of Exxx.

A distinguished subclass of circular lattices corresponds to the particular case in which
the lattice pointsExxx belong to the sphere of radiusR : |Exxx| = R. In this case there exists,
like for the symmetric reduction, an elegant relation between point lattices and hyperplane
lattices.

Proposition 5.6. Given a system of parallel quadrilateral lattices{Exxx(k)}Mk=1 and the asso-
ciated matrix��� of the system defined with respect to an orthonormal basis{Eeeek}Mk=1, the
following properties are equivalent.
1. The matrix���/R is orthogonal:

������T =���T��� = R2
I, ���T = R2���−1. (5.10)
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2. The polar hyperplaneP(Exxx(k)) coincides with the dual hyperplaneR2Eyyy∗
(k) :

P(Exxx(k)) = R2Eyyy∗
(k), k = 1, . . . ,M. (5.11)

3. The quadrilateral latticesExxx(k)/R, k = 1, . . . ,M, form an orthonormal basis:

Exxx(i) · Exxx(j) = R2δij , i, j = 1, . . . ,M. (5.12)

In addition, the associated tangent vectorsXXXi, XXX
∗
i , i = 1, . . . , N , are related by the

following formulas:

XXXi = ρi

2R2
Ti(���XXX

∗T
i ) = − ρi

2R2
���(TiXXX

∗T
i ), i = 1, . . . , N, (5.13)

TiXXX
∗
i = − 2

ρi
XXXT
i ���, i = 1, . . . , N, (5.14)

with

|XXXi |2 = ρi, Ti |XXX∗
i |2 = 4R2

ρi
, (5.15)

and satisfy the circularity constraint(5.2)and its adjoint

C◦∗
ij := XXX∗

i · T −1
i XXX∗

j +XXX∗
j · T −1

j XXX∗
i = 0. (5.16)

Proof. The equivalence between (1) and (2) and formula (5.12) is a straightforward con-
sequence of the definitions of���, Exxx(k) andEyyy∗

(k). Furthermore, the quadrilateral lattice on a
sphere is obviously circular, the circles being the intersections of the sphere with the planes
of the elementary quadrilaterals [12].

(1) ⇒ (3). Applying1i to Eq. (5.10) leads to

TiXXX
∗T
i ⊗XXXT

i = −R−2���TXXXi ⊗ Ti(XXX
∗
i ���

T), i = 1, . . . , N, (5.17)

which implies that

XXXi = γiTi(���XXX
∗T
i ), (5.18)

TiXXX
∗
i = − 1

R2γi
XXXT
i ���, (5.19)

for someγi . Using Eq. (3.7) in (5.18), one obtains

XXXi = γi

1 − γi |TiXXX∗
i |2
���TiXXX

∗T
i , (5.20)

which together with (5.19) leads to identification of the factorsγi :

γi = 2

|TiXXX∗
i |2

= |XXXi |2
2R2

. (5.21)
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Notice that Eq. (1.6) implies

TiTjXXX
∗
i = (1 − (TiQji )(TjQij ))

−1(TiXXX
∗
i + (TiQji )TjXXX

∗
j ), i 6= j. (5.22)

Application of the shift inj direction to Eq. (5.20) and using the above identity leads to
equations

Tjγi − γi(1 − (TiQji )(TjQij )) = 0, (5.23)

γiTiQji + γjTjQij + R2XXXi ·XXXj = 0, (5.24)

the first of them allows for identificationρi = 2γiR2, while the second gives the circularity
condition.

At last, Eqs. (5.13) and (5.15) imply the following relation between the circularity prop-
erty and its dual:

C◦
ij = − 1

4R2

TiTj τ

τ
TiTjC

◦∗
ij , (5.25)

which implies that also Eq. (5.16) is satisfied. The proof of (3)⇒(1) is similar and is left to
the reader. �

Corollary 5.7. Quadrilateral lattice in a sphere is conjugate to its own polar (with respect
to the sphere) hyperplane lattice.

In the continuous limit, Eq. (5.2) become the orthogonality conditions

XXXi ·XXXj = 0, i 6= j, (5.26)

and the circular lattice reduces to an orthogonal conjugate net.

6. ddd-invariant lattice

In this section we introduce and discuss a basic dimensional reduction of the quadrilateral
lattice, thed-invariant lattice, characterized by the invariance of a certain natural frame
along the main diagonal of the lattice.

To do so, it is convenient to put this reduction in the natural framework of the theory of
transformations of the quadrilateral lattice discussed in great detail in [18].

From a quadrilateral latticeExxx : ZN → R
M , one can easily construct a new quadrilateral

lattice just translatingExxx in some coordinate direction and combining this translation with
a Combescure transformation. If the translation takes place along the main diagonal, one
obtains the new quadrilateral lattice

x̂xx = C(T Exxx), (6.1)

whereT := ∏N
i=1Ti is the total translation along the main diagonal andC(·) is the Combes-

cure transformation [18]. From the above definition it follows that

1ix̂xx = (TiĤi)X̂XXi, (6.2)
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where

X̂XXi = TXXXi (⇒ Q̂ij = TQij ), (6.3)

andĤi are solutions of

1jĤi = (Tj Ĥj )Q̂ji , i 6= j, (6.4)

different fromTHi .
To establish relations between quadrilateral latticesExxx and x̂xx, one uses the following

relations valid for generic quadrilateral lattices.

Lemma 6.1. For any subsetL = {i1, . . . , iL} of the indices1,2, . . . , N , let us define the
partial shiftTL = ∏L

`=1Ti` , then

TLXXXi =
{
XXXi +∑

`∈L(TLQi`)XXX` if i /∈ L,
TiXXXi − (TiQii )XXXi +∑

`∈L(TLQi`)XXX` if i ∈ L,
(6.5)

whereQii was defined in(3.27).

Proof. We first prove by induction the casei /∈ L. For |L| = 1 the statement follows from
the linear problem (1.4). Whenk /∈ L andk 6= i and the upper part of the formula (6.5)
holds, then

TL∪{k}XXXi = TL(XXXi + (TkQik)XXXk)

=XXXi + (TL∪{k}Qik)XXXk +
∑
`∈L
TL(Qi` + (TkQik)Qk`)XXX`,

and application of the Darboux equations (1.5) concludes the first part of the proof. Notice
that applying the shiftsTL andTk in different order, we obtain the following generalized
Darboux equations

TLQik = Qik +
∑
`∈L
(TLQi`)Q`k, i 6= k /∈ L. (6.6)

To show the lower part of the formula (6.5) let us apply the shiftTi to the upper part of it
obtaining

TL∪{i}XXXi = TiXXXi +
∑
`∈L
(TL∪{i}Qi`)XXX` +

(
Ti
∑
L

(TLQi`)Q`i

)
XXXi. (6.7)

It remains to prove that for a generic lattice andi /∈ L,

TLQii = Qii +
∑
L

(TLQi`)Q`i, (6.8)

which can be done, again, by simple induction with the help of Eq. (6.6). �

The quadrilateral latticêxxx is characterized by the following property.
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Proposition 6.2. Let Exxx : ZN → R
M be a quadrilateral lattice and let̂xxx : ZN → R

M be
its transformed quadrilateral lattice(6.1).Then

X̂XXi = TXXXi = TiXXXi − (TiQii )XXXi +
N∑
`=1

Q̂i`XXX`, (6.9)

and consequently,

1iQij + 1̃j Q̂ij −Qij (TiQii − Q̂ii − 1)− Q̂ij (T
−1
j Q̂jj −Qjj + 1)

+
N∑

`=1,`6=i,j
Q̂i`Q j̀ = 0, i 6= j. (6.10)

Proof. Eq. (6.9) follows from Lemma 6.1 forL = {1, . . . , N} and from (6.3). Eq. (6.10)
is the compatibility condition of Eqs. (1.4) and (6.9). �

The fixed point of transformation (6.1) (and therefore an integrable reduction of the
quadrilateral lattice) is represented by the latticesExxx which are parallel to their translations
T Exxx : Exxx = C(T Exxx) or, equivalently, for whichTXXXi = XXXi .

Definition 6.3. A quadrilateral latticeExxx : ZN → R
M is diagonally invariant (d-invariant)

iff

TXXXi = XXXi. (6.11)

Remark. Eq. (6.11)implies that

TQij = Qij . (6.12)

Remark. The d-invariant lattice can be described effectively byN − 1 parameters since
it depends on the differences of the variablesni :

XXXi = XXXi(n1 − n2, n2 − n3, . . . , nN−1 − nN). (6.13)

Corollary 6.4. If Exxx is d-invariant, thenT Exxx is parallel to Exxx.

A d-invariant lattice is characterized by the following property.

Proposition 6.5. Let Exxx : ZN → R
M be a d-invariant lattice, then

1iXXXi = (TiQii )XXXi −
N∑
`=1

Qi`XXX`, (6.14)

and consequently,

1iQij + 1̃jQij −Qij (1iQii − 1̃jQjj )+
N∑

`=1,`6=i,j
Qi`Q j̀ = 0. (6.15)
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Proof. Eqs. (6.14) and (6.15) are a straightforward consequence of Eqs. (6.9) and (6.10),
respectively. �

Remark. Formula (6.14) implies that the N-dimensional d-invariant lattice is effectively
contained in an N-dimensional subspace ofRM , therefore without loss of generality, we
can put in this sectionN = M.
We present now the characterization ofd-invariant lattices in terms of hyperplane lattices.

Theorem 6.6. If the quadrilateral latticeExxx : ZN → R
N is d-invariant, then its rotation

coefficientsQij are also the backward rotation coefficients of its complementary lattice

P̃ ∗
ij = Qij , i 6= j = 1, . . . , N. (6.16)

Proof. If Exxx is quadrilateral, then comparison of the formula (6.14) with Eqs. (3.17) and
(3.26) proves the statement. �

7. The Egorov lattice

Definition 7.1 ([33]). A quadrilateral lattice is aEgorov latticeiff the internal angles cor-
responding to the verticesTi Exxx andTj Exxx are right angles (see Fig. 6).

Since the opposite angles of the elementary quadrilaterals of the Egorov lattice sum up
to the flat angle we have the following result.

Corollary 7.2 ([33]). The Egorov lattice is circular.

Remark. The Egorov lattice constraint can be written algebraically in the form

XXXi · TiXXXj = 0, i 6= j, (7.1)

which implies the circularity condition(5.2).

Fig. 6. Egorov lattice.
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Corollary 7.3. The line〈Exxx, TiTj Exxx〉 is a main diagonal of the circle defined by the points
Exxx, Ti Exxx andTj Exxx.

Proposition 7.4. The Egorov lattice is an integrable reduction of the quadrilateral lattice.

Proof. Define functionsCE by equation

CE
ij = XXXi · TiXXXj , (7.2)

and notice the following identity:

TkC
E
ij = CE

ij + (TkQik)C
E
kj + (TiTkQjk)C

E
ik + (TiTkQji )C

E
ki (7.3)

valid for a generic quadrilateral lattice. In the case of the Egorov lattice we haveCE = 0,
and Eq. (7.3) shows that such constraint is admissible. �

In the previous sections we introduced two other basic integrable reductions of the quadri-
lateral lattice: the symmetric and thed-invariant lattices. We will show that the Egorov lattice
is symmetric and, forN = M, d-invariant.

Proposition 7.5. The Egorov lattice is symmetric.

Proof. The linear problem (1.4) and the constraint (7.1) imply that

XXXi ·XXXj + (TiQji )XXXi ·XXXi = 0, i 6= j,

which gives

(TjQij )|XXXj |2 = (TiQji )|XXXi |2, i 6= j. (7.4)

Because the Egorov lattice is circular, then|XXXi |2 can be identified with the potentialsρi ,
therefore Eq. (7.4) leads to the symmetry constraint (4.3). �

Remark. An equivalent form of the constraint(7.4)was used by Schief[35] in his derivation
of the Egorov lattice from the circular lattice.

Remark. The symmetry and circularity constraints are not enough to obtain algebraically
the Egorov lattice. Indeed, consider a symmetric and circular lattice together with its tangent
vectorsXXXi and the corresponding rotation coefficientsQij . The symmetry condition implies
the existence of aτ -function(we call it τS) such that the potentialsρS

i = Tiτ
S/τS satisfy

ρS
i TiQji = ρS

j TjQij . (7.5)

The circularity condition, in turn, implies existence of aτ -function(we call itτC) such that
the corresponding potentialsρC

i are given by

ρC
i = |XXXi |2. (7.6)
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Eqs. (2.17)–(2.19)imply that the potentialsρC
i andρS

i are connected by functions of single
variables

ρC
i (n) = ai(ni)ρ

S
i (n), i = 1, . . . , N. (7.7)

The Egorov lattice corresponds to the distinguished case in which we haveai ≡ 1, i =
1, . . . , N .

Corollary 7.6. In the circular lattice|TiX̃XXi | = 1/|XXXi |,which implies that the parallelogram
P(XXXi,XXXj) is anti-similar to the parallelogramP(TiX̃XXi, TjX̃XXj ). In the Egorov lattice the
parallelogramP(XXXi,XXXj) is also anti-similar to the parallelogramP(1iXXXj ,1jXXXi).

ForN = M the Egorov lattice exhibits thed-invariance property [34].

Proposition 7.7. The Egorov latticeExxx : ZN → R
N is d-invariant.

Proof. The orthogonality conditions (7.1) imply that

XXXi ⊥ 〈TiXXX`〉N`=1,`6=i , (7.8)

TXXXi ⊥ 〈TT−1
` XXX`〉N`=1,`6=i , (7.9)

where〈TiXXX`〉N`=1,`6=i is the linear space spanned by{TiXXX`}N`=1, ` 6= i. In addition, the
planarity of the lattice implies that these two linear subspaces coincide, therefore,XXXi and
TXXXi , which are orthogonal to the same(N − 1)-dimensional linear subspace, must be
proportional:

TXXXi = aiXXXi. (7.10)

Applying T to the linear system (1.4) and using (7.10), we infer thatai = ai(ni) (= 1
without loss of generosity) andTQij = Qij . �

We conclude this section considering the Egorov lattice from the point of view of the
parallel systemExxx(k) and of its connections with hyperplane lattices. The results are a straight-
forward consequence of Propositions 4.9 and 5.6 and of the definition of the Egorov lattice.

Proposition 7.8. Given a system of parallel quadrilateral lattices{Exxx(k)}, k = 1, . . . ,M,
and the associated matrix���, the following properties are equivalent.
1. The matrix���/R is symmetric and orthogonal:

���T = R2���−1 =��� ⇒���2 = R2I. (7.11)

2. The polar hyperplane latticeP(Exxx(k)) coincides with the dual hyperplane latticeR2Eyyy∗
(k)

and with the adjoint hyperplane lattice:

P(Exxx(k)) = Exxx(k) = R2Eyyy∗
(k), k = 1, . . . ,M. (7.12)
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The continuous limit of Eqs. (1.5), (4.2) and (5.2), namely Eqs. (1.10), (4.29) and (5.26),
respectively, characterize submanifolds parametrized by Egorov systems of conjugate co-
ordinates (Egorov nets). Also, the continuous limit of (6.15) together with (4.29) leads to
the Lamé equations

∂iβij + ∂jβji +
N∑

`=1,`6=i,j
βi`βj` = 0, (7.13)

which together with Eqs. (1.10) and (4.29), provide the usual characterization of a Egorov
net. At last, thed-invariance properties (6.11) and (6.12) reduce to

N∑
`=1

∂`βij = 0, (7.14)

N∑
`=1

∂`XXXi = 0, (7.15)

implying thatβij = βij (u1 − u2, . . . , uN−1 − uN). For N = 3, we recover a classical
characterization of the Egorov net [2,9].

8. ∂̄̄∂̄∂ formulations of the reduction

In this section we prove that the distinguished reductions of the quadrilateral lattice
discussed in the previous sections are integrable via the∂̄ reduction method introduced in
[40] and generalized to a discrete context in [16]. For the sake of completeness, we first
summarize in Sections 8.1 and 8.2, the∂̄ formulation of the quadrilateral lattice and the
main result of thē∂ reduction theory applied to it.

The∂̄ dressing method is a very convenient tool to construct integrable multidimensional
systems, together with large classes of solutions [7,38,39]. Consider the (by assumption,
uniquely solvable) matrixM ×M ∂̄ problem

∂λ̄φ(λ) = ∂λ̄η(λ)+
∫
C

R(λ, λ′)φ(λ′)dλ′ ∧ dλ̄′, λ, λ′ ∈ C, (8.1)

where∂λ̄ = ∂/∂λ̄, the given rational functionη(λ) (the normalization ofφ(λ)) describes
the singularities and the asymptotic behavior ofφ in the complex plane andR(λ, λ′) is the
givenM ×M matrix ∂̄-datum; consider also the adjoint∂̄ problem:

∂λ̄φ
∗(λ) = −∂λ̄η(λ)−

∫
C

φ∗(λ′)R(λ′, λ)dλ′ ∧ dλ̄′, λ, λ′ ∈ C. (8.2)

The abovē∂ problems imply the bilinear identity∫
C∞
φ∗

2(λ)φ1(λ)dλ+
∫
C

[φ∗
2(λ)∂λ̄η1(λ)− (∂λ̄η2(λ))φ1(λ)] dλ ∧ dλ̄ = 0 (8.3)
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(whereC∞ is the circle with center at the origin and arbitrarily large radius, and the corre-
sponding integration is counter-clockwise), which involves the solutionsφ1 andφ∗

2 of (8.1)
and (8.2) corresponding to the normalizationsη1 andη2, respectively.

The dependence of theM × M matricesφ, φ∗ andR on λ̄ and λ̄′ : φ = φ(λ, λ̄),
R = R(λ, λ̄, λ′, λ̄′) will be omitted systematically throughout the paper.

In the following, we shall consider only the two basic solutionsχ(λ) andχ(λ, µ) of
Eq. (8.1), corresponding, respectively, to the “canonical normalization”η = 1 and to the
“simple pole normalization”η = (λ − µ)−1 [22,23], together with the corresponding
solutions of the adjoint problem (8.2)χ∗(λ) andχ∗(λ, µ).

8.1. ∂̄ formulation of the quadrilateral lattice

It turns out that the MQL equations are integrable via the∂̄-dressing method [5,16] and
all the geometric quantities of the lattice have a distinguished role in this∂̄ scheme.

Proposition 8.1. Let theM×M ∂̄-datum R depend on the lattice variablen = (n1, . . . , nN)

∈ ZN in the following way:

R(n; λ, λ′) = (g(n, λ))−1R0(λ, λ
′)g(n, λ), (8.4)

g(n, λ) =
N∏
k=1

[I + (λ− 1)Pk]
nk , (8.5)

whereR0(λ, λ
′) is an arbitrary function ofλ andλ′, but constant in n andPi, i = 1, . . . , N ,

are the usual ith projection matrices:(Pi)jk = δij δik. Then the following results hold.
1. The matrix functions

ψ(λ) := g(n; λ)χ(λ), ψ∗(λ) := χ∗(λ)(g(n; λ))−1 (8.6)

satisfy the following linear systems

1iψkj(λ) = (TiQji )ψki(λ), i = 1, . . . , N, j, k = 1, . . . ,M, i 6= j, (8.7)

1iψ
∗
jk(λ) = (Tiψ

∗
ik(λ))Qij , i = 1, . . . , N, j, k = 1, . . . ,M, i 6= j, (8.8)

respectively, whereQij is the(ij)-component of the matrix Q defined by

Q = lim
λ→∞

(χT(λ)− I ) = lim
λ→∞

(I − λ(χ∗T(λ)). (8.9)

2. The matrix function

ψ(λ,µ) := g(n; λ)χ(λ, µ)(g(n;µ))−1 (8.10)

is connected to the canonically normalized solutions of the∂̄ problem through the equa-
tions

1iψkj(λ, µ) = ψki(λ)Tiψ
∗
ij (µ), i = 1, . . . , N, j, k = 1, . . . ,M. (8.11)
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Furthermore, the matrix function

ψ∗(λ, µ) := g(n;µ)χ∗(λ, µ)(g(n, λ))−1 (8.12)

is connected toψ(λ,µ) via

ψ∗(µ, λ) = ψ(λ,µ) (8.13)

and the canonically normalized solutions of the∂̄ problem can be obtained fromχ(λ, µ)
via the asymptotics[6]:

χ∗(µ) = lim
λ→∞

[λχ(λ, µ)], χ(λ) = − lim
µ→∞[µχ(λ,µ)] (8.14)

and

Tiχji (λ,0) = χji (λ)Tiχ
∗
ii (0), χij (0, µ) = −χii (0)Tiχ

∗
ij (µ). (8.15)

Proof. The proof is standard in the philosophy of the∂̄ method.
1. First, after defining the “long derivatives”

(Dif )(λ) = 1if + (λ− 1)PiTif, (D∗
i f )(λ) = −1̃if + (λ− 1)(T −1

i f )Pi,

one can verify that the functions

(Diχ)(λ)Pj − χ(λ)Pi(TiQ
T)Pj ,

Pj (D
∗
i χ

∗)(λ)− Pj (T
−1
i Q∗T)Piχ

∗(λ), i 6= j,

whereQ∗
ij is the(ij)-component of the matrixQ∗ defined by

Q∗ = lim
λ→∞

(χ∗T(λ)− I ), (8.16)

solve the homogeneous version of the∂̄ problems (8.1) and (8.2) and go to zero at
λ → ∞; therefore, uniqueness implies the equations

(Diχ)(λ)Pj = χ(λ)Pi(TiQ
T)Pj , i 6= j, (8.17)

Pj (D
∗
i χ

∗)(λ) = Pj (T
−1
i Q∗T)Piχ

∗(λ), i 6= j, (8.18)

or, equivalently, the equations

1iψ(λ)Pj = ψ(λ)Pi(TiQ
T)Pj , i 6= j, (8.19)

Pj1iψ
∗(λ) = −Pj (T −1

i Q∗T)PiTiψ
∗(λ), i 6= j. (8.20)

These last two equations, written in components, coincide with (8.7) and (8.8), using
also the property

Q∗ = −Q, (8.21)

which is a direct consequence of the bilinear identity (8.3) forχ(λ) andχ∗(λ). At
last, theλ → ∞ limit of Eq. (8.17) implies that the coefficientsQij satisfy the MQL
equations (1.5).
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2. The proof of formulas (8.11) is conceptually similar. The function

Di (χ(λ, µ)(g(µ))
−1)− χ(λ)PiTiϕ(µ), (8.22)

where

ϕ(µ) = lim
λ→∞

λχ(λ, µ)(g(µ))−1 (8.23)

solves the homogeneous version of the∂̄ problem (8.1) and goes to zero atλ → ∞,
therefore uniqueness implies the equation

Di (χ(λ, µ)(g(µ))
−1) = χ(λ)PiTiϕ(µ). (8.24)

This equation is equivalent to

1iψ(λ, µ) = ψ(λ)PiTiϕ(µ), (8.25)

whose component form reduces to (8.11), taking account of the formulas

ϕ(µ) = ψ∗(µ), ϕ∗(µ) = −ψ(µ), (8.26)

which are obtained from the bilinear identity (8.3) forχ(λ, µ), χ∗(λ) andχ∗(λ, µ),
χ(λ), respectively. At last, the bilinear identity (8.3) forη1 = (λ−µ)−1, η2 = (λ−µ′)−1

givesχ∗(µ′, µ) = χ(µ,µ′) or, equivalently, Eq. (8.13); furthermore, Eqs. (8.13), (8.23)
and (8.26) lead to Eqs. (8.14) and (8.24), which when evaluated atλ = 0, gives Eq. (8.15).

�

From the solutionsψ(λ,µ), ψ(λ)andψ∗(λ)of the∂̄ problem one can construct a system
{Exxx(k)}, k = 1, . . . ,M, of parallel quadrilateral lattices, together with the corresponding
tangent vectors and Lamé coefficients through the following matrix equations:

��� =
∫
C

dλ ∧ dλ̄
∫
C

dµ ∧ dµ̄M(λ)ψ(λ, µ)M∗(µ), (8.27)

XXXi =
∫
C

dλ ∧ dλ̄M(λ)ψi(λ), XXX∗
i =

∫
C

dµ ∧ dµ̄ ψ∗
i (µ)M

∗(µ), (8.28)

whereExxx(i) is theith column of matrix���, ψi(λ) is theith column of matrixψ(λ), ψ∗
i (µ) is

theith row of matrixψ∗(µ), andM(λ)andM∗(λ)are arbitraryM×Mmatrices independent
of n.

Finally, the evaluation of Eq. (8.17) at the distinguished pointλ = 0 leads to theτ -function
representation (2.15) and (2.16) of the MQL lattice. Indeed, atλ = 0, Eq. (8.17) reads

1iχjj (0) = χji (0)TiQji , (8.29)

χij (0)+ χii (0)TiQji = 0, (8.30)

and imply that

1iχjj (0)

χjj (0)
= −(TiQji )(TjQij ). (8.31)
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Comparing Eq. (8.31) with Eq. (2.8) leads to the identification

χii (0) = ρi = Tiτ

τ
, (8.32)

while Eq. (8.30) gives

χji (0) = −Tj τij
τ
, i 6= j. (8.33)

It is also possible to expressχ∗
ii (0) andχ∗

ij (0) in terms ofτ andτij . To do so, we remark that

the functionφ2(λ) = Tiχ
∗(λ)(I + (λ − 1)Pi)−1 satisfies Eq. (8.2) corresponding to the

forcingπδ(λ)PiTiχ∗(0). The bilinear equation (8.3) with thisφ2 and withφ1(λ) = χ(λ)

reduces to the following equation:

TiQ
T(I − Pi)+ Pi + (I − Pi)Q

T = (Tiχ
∗(0))Piχ(0), (8.34)

whoseii and(ij)-components read as

(Tiχ
∗
ii (0))χii (0) = 1, (Tiχ

∗
ji (0))χii (0) = Qij , (8.35)

implying that

χ∗
ii (0) = 1

T −1
i ρi

= T −1
i τ

τ
, χ∗

ji (0) = T −1
i τij

τ
. (8.36)

8.2. ∂̄-reduction theory of the quadrilateral lattice

The abovē∂ formulation allows one to look for reductions of the MQL at the simpler level
of the ∂̄-datumR [16]. The particular form (8.4) of it implies the following proposition.

Proposition 8.2. The following linear constraint on thē∂-datumR(λ, λ′) :

RT(λ−1, λ′−1) = |λ′|4λ̄2F(λ′)R(λ′, λ)(F (λ))−1 (8.37)

gives rise to integrable reductions of the MQL. In formula(8.37),

F±(λ) = λ−1[A(λ)± A(λ−1)] (8.38)

andA(λ) is an arbitrary diagonal matrix.

The main implication of the constraint (8.37) is that the functionφT(λ−1)F (λ) satisfies
the adjoint∂̄ problem (8.2), while the functionF−1(λ−1)φ∗T(λ−1) satisfies thē∂ problem
(8.1):

∂λ̄(φ
T(λ−1)F (λ))= φT(λ−1)∂λ̄F (λ)+ (∂λ̄η(λ

−1))F (λ)

−
∫
C

(φT(λ′−1)F (λ′))R(λ′, λ)dλ′ ∧ dλ̄′, (8.39)
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∂λ̄(F
−1(λ−1)φ∗T(λ−1))= (∂λ̄F

−1(λ−1))φ∗T(λ−1)− F−1(λ−1)∂λ̄η(λ
−1)

+
∫
C

R(λ, λ′)(F−1(λ′−1)φ∗T(λ′−1))dλ′ ∧ dλ̄′, (8.40)

and these equations, through the bilinear identity (8.3), imply the non-local quadratic con-
straints:∫

C∞
φT(λ−1)F (λ)φ(λ)dλ+

∫
C

[φT(λ−1)(∂λ̄F (λ))φ(λ)+ (∂λ̄η(λ
−1))F (λ)φ(λ)

+ φT(λ−1)F (λ)∂λ̄η(λ)] dλ ∧ dλ̄ = 0, (8.41)

∫
C∞
φ∗(λ)F−1(λ−1)φ∗T(λ−1)dλ+

∫
C

[φ∗(λ)(∂λ̄F
−1(λ−1))φ∗T(λ−1)

− (∂λ̄η(λ))F
−1(λ−1)φ∗T(λ−1)

− φ∗(λ)F−1(λ−1)∂λ̄η(λ
−1)] dλ ∧ dλ̄ = 0. (8.42)

Therefore, the constraint (8.37) establishes a non-trivial connection, whose nature depends
on the particular choice ofF(λ) (or, better, ofA(λ)), between the solutions of the∂̄ problem
(8.1) and of its adjoint (8.2) or, equivalently, between quadrilateral lattices and their dual
objects, the quadrilateral hyperplane lattices. In the following, we shall identify the matrix
functionsA(λ) which correspond to the symmetric, circular and Egorov lattices.

8.3. ∂̄ formulation of the symmetric lattice

In this section we solve the symmetric lattice. We shall show that the following choice:

A(λ) = I

2
⇒ F+(λ) = λ−1I (8.43)

corresponds to the symmetric lattice reduction.

Proposition 8.3. LetF(λ) = λ−1I , then the following equations hold:

ψT(λ, µ) = (λµ)−1ψ∗(µ−1, λ−1), (8.44)

λ−1ψji (λ
−1) = Tiτ

τ
ψ∗

ij (λ), (8.45)

χT(0) = χ(0), (8.46)

and Eqs.(8.27) and (8.28)allow to construct a system of symmetric lattices provided that

M∗(λ) = λ|λ|−4MT(λ). (8.47)

Proof. We use the same strategy of the previous∂̄ proofs. Comparing Eq. (8.39) with
Eq. (8.2) forη = (λ− µ)−1, one obtains

χT(λ−1, µ−1) = λµχ∗(λ, µ), (8.48)
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or equivalently, (8.44), using Eqs. (8.11) and (8.13). Furthermore, one can verify that
Tiχ

∗(λ)(I − (λ−1 − 1)Pi) satisfies thē∂ equation (8.1) forη = Tiχ
∗(0)Pi . Therefore,

taking account of theλ large asymptotics, one obtains the equation

Tiχ
∗(λ)(I − (λ−1 − 1)Pi)− λ−1(Tiχ

∗(0))PiχT(λ−1) = (I − Pi)χ
∗(λ), (8.49)

whose(ij)-component gives (8.45), using Eqs. (8.6) and (8.36). At last, Eq. (8.41) for
η = 1 gives directly (8.46), which can be immediately identified with the symmetry con-
straint (4.3), using Eqs. (2.10), (8.32) and (8.33). Furthermore, Eqs. (8.44) and (8.45) imply
Eqs. (4.24) and (4.26), provided that one uses (8.47). �

8.4. ∂̄ formulation of the circular lattice

It was shown in [16] that the following choice

A(λ) = (λ− 1)−1I ⇒ F−(λ) = λ+ 1

λ(λ− 1)
I (8.50)

corresponds to the circular lattice reduction.

Proposition 8.4. LetF(λ) = ((λ+ 1)/λ(λ− 1))I , then the following equations hold:

χ(0)+ χT(0) = 2χT(1)χ(1), (8.51)

χ∗(0)+ χ∗T(0) = 2χ∗(−1)χ∗T(−1), (8.52)

λ+ 1

λ(1 − λ)
χT(λ−1, µ−1) = µ(µ+ 1)

1 − µ
χ(µ, λ)+ χT(1, µ−1)χ(1, λ), (8.53)

λ− 1

λ(1 + λ)
χT(µ−1, λ−1) = µ(µ− 1)

1 + µ
χ(λ,µ)+ χ(λ,−1)χT(µ−1,−1), (8.54)

4χT(1,−1)χ(1,−1) = I. (8.55)

Proof. Eqs. (8.41) and (8.42) forη = 1 give, respectively, Eqs. (8.51) and (8.52). Consider
Eq. (8.39) forη = (λ − µ)−1, then Eq. (8.53) follows from the fact that its RHS satisfies
Eq. (8.41) as well. Analogous considerations lead to Eq. (8.54). At last Eq. (8.53), evaluated
atλ = µ = −1, gives the orthogonality condition (8.55). �

To show that the above formulas give rise to a circular lattice, consider the following
identification:

Exxx(i) = (ψ1i (1, µ), . . . , ψMi(1, µ))
T, (8.56)

XXXi = (ψ1i (1), . . . , ψMi(1))
T, Hi(n) = ψ∗

in(µ), (8.57)

XXX∗
i = (ψ∗

i1(−1), . . . , ψ∗
iM(−1)). (8.58)
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Because of Eq. (8.32), the diagonal part of (8.51) leads to

χii (0) = ρi = |XXXi |2, (8.59)

while the off-diagonal part gives the circularity constraint (5.2). Evaluating Eq. (8.53) at
µ = 0 and using Eq. (8.14), one obtains

λ+ 1

λ(λ− 1)
χT(λ−1) = χ(0, λ)− 2χT(1)χ(1, λ), (8.60)

which, using Eqs. (8.15) and (8.59), can be written in the following form:

− λ+ 1

λ(λ− 1)
ψ(λ−1) = (Exxx(k) + Ti Exxx(k)) ·XXXk, k = 1, . . . ,M, (8.61)

which is the∂̄ formulation of the first point of Proposition 5.5. If, instead, we choose
µ = λ−1, we obtain

λ+ 1

λ(1 − λ)
[ψ(λ−1, λ)+ ψT(λ−1, λ)] = ψT(1, λ)ψ(1, λ), (8.62)

which, through the identification (8.56), leads to

λ+ 1

λ(1 − λ)
[ψjk(λ

−1, λ)+ ψkj(λ
−1, λ)] = xxx(j) · xxx(k). (8.63)

This formula states that the scalar product of the two parallel latticesExxx(j), Exxx(k), j 6= k,
such that

1i Exxx(j) = (TiHi(j))XXXi, Hi(n) = ψ∗
in(µ) (8.64)

is equal to the sum of two scalar solutions of the Laplace equations (1.1) and (1.7) corre-
sponding, respectively, to the Lamé coefficientsHi(j), Hi(k). If j = k, Eq. (8.63) reduces
to

|Exxx(j)|2 = 2(λ+ 1)

λ(1 − λ)
ψjj (λ

−1, λ), (8.65)

which is the∂̄ formulation of the second point of Proposition 8.44. Eq. (8.52) expresses
the circularity condition (5.16) for hyperplane lattices through the identification (8.56) and
Eq. (8.55) is thē∂ formulation of Eq. (5.10), through the identification

��� = ψ(1,−1), R = 2. (8.66)

In this case, both systems{Exxx(k)} and{Exxx∗
(k)} are circular. We finally remark that Eqs. (8.53)

and (8.54) contain all the other circular constraints for a suitable choice ofλ andµ.

8.5. ∂̄ formulation of thed-invariant lattice

Thed-invariant lattice, a distinguished reduction of the quadrilateral lattice, corresponds
to the following distributional̄∂-datum:

R(λ, λ′) = 1
2iδ(λ− λ′)R(λ), (8.67)
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and is solved by the local∂̄ problem

∂λ̄χ(λ) = χ(λ)R(λ), (8.68)

TiR(λ) = [1 + (λ− 1)Pi ]R(λ)[1 + (λ− 1)Pi ]
−1. (8.69)

If N = M, from Eq. (8.69), the invariance property follows:

TR(λ) = R(λ), (8.70)

which implies that

T χ(λ) = χ(λ). (8.71)

Consequently,

T ψ(λ) = λψ(λ), (8.72)

TQ = Q, (8.73)

Tρi = ρi, (8.74)

and takingλ = 1, we obtain formulae (6.11) and (6.12).

8.6. ∂̄ formulation of the Egorov lattice

The Egorov lattice is circular and symmetric; therefore, the corresponding constraints
are satisfied simultaneously, i.e.,

|λ′|−4λ̄−2RT(λ′−1, λ−1) = λR(λ, λ′)λ′−1 =
(

λ+ 1

λ(λ− 1)

)−1

R(λ, λ′)
λ′ + 1

λ′(λ′ − 1)
.

(8.75)

This implies the equation

2λ(λ− λ′)
λ′(λ′ − 1)(λ+ 1)

R(λ, λ′) = 0, (8.76)

which admits the distributional solution (8.67). Therefore, the∂̄ formulation of the Egorov
lattice is given in terms of thelocal ∂̄ problem (8.68) and (8.69) in which thē∂-datum
satisfies the constraint

RT(λ−1) = λ̄2R(λ). (8.77)

Because of this locality, the corresponding∂̄ reduction theory of Section 8.2 simplifies
considerably.

The constraint (8.77) implies thatχT(λ−1) is a solution of the adjoint̄∂ problem

∂λ̄χ
∗(λ) = −χ∗(λ)R(λ), (8.78)
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and the corresponding quadratic constraint

∂λ̄(χ
T(λ−1)χ(λ)) = 0, (8.79)

together with the asymptotics limλ→∞χT(λ−1)χ(λ) = χT(0), imply that

χT(λ−1)χ(λ) = χT(0). (8.80)

Evaluating this constraint atλ = 1 and using the identifications (8.57), its diagonal part
gives (8.59), while its off-diagonal part gives the Egorov constraint (7.1).
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