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Abstract

We present a detailed study of the geometric and algebraic properties of the multidimensional
quadrilateral lattice (a lattice whose elementary quadrilaterals are planar; the discrete analog of a
conjugate net) and of its basic reductions. To make this study, we introduce the notions of forward and
backward data, which allow us to give a geometric meaning to-thumction of the lattice, defined
as the potential connecting these data. Together with the known circular lattice (a lattice whose
elementary quadrilaterals can be inscribed in circles; the discrete analog of an orthogonal conjugate
net) we introduce and study two other basic and independent reductions of the quadrilateral lattice:
the symmetric lattice, for which the forward and backward data coincide, and-theariant
lattice, characterized by the invariance of a certain natural frame along the main diagonal. We
finally discuss the Egorov lattice, which is, at the same time, symmetric, circulaf-anériant.

The integrability properties of all these lattices are established using geometric, algebraic and
analytic means; in particular, we preserit formalism to construct large classes of such lattices.

We also discuss quadrilateral hyperplane lattices and the interplay between quadrilateral point and
hyperplane lattices in all the above reductions. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper [13] we have introduced the notion of multidimensional quadrilateral
lattice (MQL), i.e., a lattices : Z¥ — PM | N < M, with all its elementary quadrilaterals
planar, which is the discrete analog of a multidimensional conjugate net [9]. Furthermore,
we showed that the planarity constraint (which is a linear constraint) provides a way to
construct the lattice uniquely, once a suitable set of initial data is given.

In this paper we present a detailed study of three basic and independent integrable reduc-
tions of the quadrilateral lattice: the symmetric lattice, the circular lattice antlimnariant
lattice; we also study the Egorov lattice which is, at the same time, symmetric, circular and
d-invariant. All these reductions satisfy additional geometric properties which are compat-
ible with the planarity constraint of the MQL.

The symmetridattice follows from the observation that one can associate, with a given
quadrilateral lattice, forward and backward data connected through a potential coinciding
with the t-function of the lattice, and it corresponds to the particular situation in which the
backward and forward rotation coefficients coincide. Tineular lattice, discrete analog of
an orthogonal net, is instead characterized by the fact that all its elementary quadrilaterals
are inscribed in circles. Thé-invariant lattice is a MQL characterized by the invariance
of a certain natural frame along the main diagonal. EQerovlattice, discrete analog of a
Egorov net [2,9], is simultaneously symmetric, circular @nithvariant (forN = M), and
can be equivalently characterized by the fact that a pair of opposite angles of the elementary
guadrilateral consists of right angles.

The geometric properties characterizing the above reductions make use of the connections
between point lattices and hyperplane lattices (lattices in the dual $p¥0&). In some
cases the connection comes from additional structure in the ambient Bade some
other cases, itis a consequence of the inner symmetry of the lattice. The precise connections
between point and hyperplane lattices corresponding to all the above reductions are also
presented in this paper.

Our presentation reflects the effort of constructing a general theory of the MQL and of
its reductions and therefore the results will not appear in a chronological order of derivation
but rather in a logical order.

Although the research field of integrable discrete geometry is relatively new, the amount of
associated resultsis already very large and it is often difficult to go through the corresponding
literature, also because many of these results are not even published, having being presented
only during conferences or seminars, or private conversations. A brief but hopefully correct
account of the literature closed to the subject considered in this paper is the following.

The proper discrete analog of a conjugate net on a surface was first proposed by Sauer [32].
The MQL equations were first derived by Bogdanov and Konopelchenko [5] as integrable
discrete analogs of the Darboux equations for conjugate nets, but without any geometric
characterization. The notion of circular lattice was first proposed by Martin et al. [28]
and Nutbourne [30] fotv = 2, M = 3, as a discrete analog of surfaces parametrized
by curvature lines (see also [4]); later by Bobenko [3] r= M = 3 and, finally, for
arbitrary N < M by Cieslinski et al. [8]; subsequently, Konopelchenko and Schief [25]
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have shown that circular lattices K can be conveniently characterized by solutions of
the (2 + 1)-dimensional discrete Sine—Gordon equation [29]. A geometric proof of the
integrability of the circular lattice was first given in [8], while the analytic proof of its
integrability was given in [16] through thmethod. The notion of Egorov lattice with its
rightangles characterization was found by Schief[33]. In the derivation of the Egorov lattice,
he apparently used the algebraic formulation of the symmetric constraint; this formulation
was restricted to the subclass of circular lattices and its geometric meaning was not given
[35]. He also found thé-invariance of the Egorov lattice (the Killing vector property) [34].
The finite-gap formulations of the circular and Egorov lattices have also recently appeared
in the literature [1,26].

The new results written down in this paper, although already presented in several occa-

sions [14,15,31], are the following:

1. The geometric meaning of thefunction of the MQL.

2. The theory of integrable hyperplane lattices, and its central role in the reduction theory
of MQL.

3. The algebraic and geometric notions of symmetric &iravariant lattices as basic and
independent reductions of the MQL.

4. The successful application of theeduction method, already used in the case of circular
lattices [16], to all the other reductions.

After this work was completed we were told that the algebraic formulation of a symmetric
guadrilateral lattice was already known to Schief [36].

In the rest of this section we summarize the basic results on quadrilateral lattices and the
known facts on hyperplanes in projective spaces which will be used in the paper. In Section
2 we introduce the “backward” representation of the quadrilateral lattice and we show that
the compatibility between the backward construction and the standard forward construction
leads to the existence of a potential which can be identified withrthenction of the
lattice. In Section 3 we first introduce the notion of quadrilateral hyperplane lattice; then
we introduce and study the notions of dual, adjoint, conjugate and complementary systems
of point and hyperplane lattices. In Section 4 we study the first integrable reduction, the
symmetric lattice together with its integrability properties. In Section 5 we discuss, in the
same spirit, the second basic reduction, the circular lattice. In Section 6 we define the third
basic reduction, thé-invariant lattice and study its properties. Section 7 is devoted to the
study of the Egorov lattice which is, at the same time, symmetric, circulad andariant.

In Section 8 we finally study the integrability properties of all the above lattices from the
point of view of their solvability, making use of@&reduction method recently introduced
in [40] in the continuous case and generalized in [16] to a discrete context.

We finally remark that the equations characterizing the above lattices are potentially rele-
vant also in physics, being integrable discretizations of equations arising in hydrodynamics
[20,21,24,37] and in quantum field theory [10,17,19].

1.1. Quadrilateral point lattices

Consider a multidimensional quadrilateral lattice, i.e., a mappin@" — P¥ N <
M, with all the elementary quadrilaterals planar [13]. In the affine representation (in which
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Fig. 1. Definition of the forward data.

the lattice is a mapping : Z"¥ — RM) the planarity condition can be formulated in terms
of the Laplace equations (see also [11])

AiAE = (T A)NE + (TjADAE, i #j, i,j=1,...,N, (1.1)

whereT; is the translation operator in thalirection,A; = 7; — 1 and the coefficientd;
satisfy the MQL equation

ArAjj = (Tj A Aij + (T A Aik — (T Ai) Ak, 1 # j #k#1. (1.2)

It is often convenient to reformulate Eq. (1.1) as a first-order system [13]. We introduce the
suitably scaled tangent vectaXs, i = 1,..., N,

Aix = (T H)X;, (1.3)
in such a way that thgth variation ofX; is proportional taX ; only (see Fig. 1):
AiX; =T;0pX;, i#]. (1.4)

The compatibility condition for the system (1.4) gives the following new form of the MQL
equations:

AvQij = (Tk Qi) Qkj, 1 # Jj # Kk #1. (1.5)
The scaling factorgd;, called the Lamé coefficients, solve the linear equations
AiH; = (T;H)Qjj, 1 # ], (1.6)
whose compatibility gives Eq. (1.5) again; moreover,
AiH;
Aj=—L2 i 1.7
ij H, I # x.7)

In [13] it was proven that, giveéN(N — 1) initial quadrilateral surfaces, the quadrilateral
latticex follows uniquely from the planarity constraint. To construct the initial surfaces,
one givesN arbitrary intersecting initial curveéo), i =1,..., N;theinitial (i, j)-surface

is then built uniquely assigning the initial dazq(l-o), i # j, as functions ofs;, n; via
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Eq. (1.1). Equivalently, together with th€ intersecting initial curves, we can give the
initial data{Hl.(O), Qi(jo)}, meaning that we give the coefficien‘hs(o) (or, equivalently, the

tangent vectorilgo)) on theith initial curve and then the da’@i(jo), i # j, as functions
of n;, nj. Therefore, the solution of the MQL equations depend#Vev — 1) arbitrary
functions of two variables.

Remark. To make the construction of the lattice possible, in our considerations we as-
sume that we deal with generic lattices, i.e., that the point x and its nearest neighbors
Tix, ..., Tyx are in general position; in consequence, the subsgacé&ix, ..., Tyx) is

a linear subspace @ of maximal possible dimension N

Inthis paper we study some distinguished reductions of the MQL which possess additional
geometric properties that once imposed on the initial surfaces “propagate” everywhere
through the construction of the lattice. Since the quadrilateral lattice is integrable, these
reductions will inherit its integrability properties.

In the continuous limit,

R 0
AiX ~ ea— =¢0;,, O<ex1, (1.8)

Ui
Qij ~ &fij, (1.9)

the MQL reduces to aiv-dimensional conjugate net i®RM characterized by the Darboux
equations [9]:

wBi = BkPxj» 1 F#JFkFIL (1.10)
1.2. Hyperplanes

In Section 3 we introduce and study the properties of lattices in the dual space, i.e., of
hyperplane lattices. These considerations will turn out to be relevant in the reduction theory
of the quadrilateral lattices when the introduction of additional geometric structure will
allow to establish a direct connection between point lattices and hyperplane lattices.

To make the paper self-contained, in the rest of this section, we summarize some basic
known facts on the algebraic representation of the projective space and of its dual.

Points ofP™ are directions (one-dimensional linear subspaceR)f'6f! and they can be
represented (up to multiplication by a non-zero scalar factor) by non-zero vecitsdt
In a fixed basigg, e1, ..., ey of RM+1 the coordinates = (u°, u?, ..., u™)T of such a
vector are called the homogeneous coordinates of the corresponding peifit] of the
projective space.

The hyperplanes oP™ are M-dimensional linear subspaces &+ and they can
be represented (up to multiplication by a non-zero scalar factor) by non-zero co-vectors
of RM+1)* = RM+L The coordinatea* = (ag,aj, ..., a},) of such a co-vector are
called the homogeneous coordinates of the corresponding hypetglaada*], and the
condition that the point with homogeneous coordinates (u°, ut, ..., u™)T belongs to
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the hyperplane representedd¥y = (a3, a3, . . ., aj,) is given by the linear homogeneous
equation
(@ ) = agu® + atut + -+ afu™ = 0. (1.11)

Remark (Duality principle). Notice that Eq(1.11)is “symmetric” in the sense that the
expression “the point u belongs to the hyperplarie can be changed into “the hyperplane
a* contains the point u”. Geometrically, all hyperplangmints of(P*)*) passing through
afixed point o™ form a hyperplane iiP¥)*, which is represented by this point, therefore
(PMy*y* =PM.

By fixing a hyperplandP’é”o‘1 in PM, called then the hyperplane at infinity, we can
represent the remaining (affine) part! = PM \ PX-1 of the projective space by points
v € RM; if the hyperplane at infinity is characterized b§ = 0, then the points of the
affine space can be normalizedo u?, ..., u™)T, andu = (u?,..., u™)T.

Hyperplanesim\¥ can be represented (again, up to a non-zero factor) by non-homogeneous
linear equations as follows:

ay +ajxt+. +aixM =0 (1.12)

The representation can be made unique by affinizatio@®¥f)*, i.e., by removing from
(PM)* hyperplanes passing through a fixed poinP#f. For our purposes we assume that
this point belongs t&\™, and we identify it with the origin oR™. Then the equation of
any hyperplane which does not pass through the origingge# 0, can be normalized to
haveag = —1. Such a hyperplane can be represented by the co-wgtter(RM)* and
consists of points satisfying the equation

@ x) =aixt 4+ +ajM=1 (1.13)

If v is a point of the hyperplane representedabythen the parallel (in the standard sense)
hyperplane passing through is represented by 1a*; equivalently, the equation of such
a hyperplane can be written &&*|x) = r. Taking the limitr — oo, we infer that the
hyperplane atinfinitf?’Z ~1 is represented by the zero co-vedorOn the other hand, all the
hyperplanes passing throu@fe RM are represented by “infinite” co-vectors; equivalently,
the equation of the hyperplane passing throﬁgimd parallel to that representeddiycan
be written aga®|x) = 0.

Given two hyperplanes* andb* represented by the co-vectarsandb, the equation of
the unique hyperplane passing through the origin and containing their intersettion is

@ —b'|%)=0. (1.14)

Definition 1.1. Two subspaces of co-dimension 2 are called “co-parallel” if there exists a
hyperplane passing throu@hand containing them.

Remark. The above notion is dual to the parallelism of two lines in the affine space
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P(x)

Fig. 2. Polarity with respect to a sphere.

Corollary 1.2. Two co-dimensior2 subspaces obtained by intersection of two pairs of
hyperplanes; Nb;, i = 1, 2,are co-parallel if the corresponding co-vecttﬁj&—bf, i=
1, 2, are proportional

A correlationis a projective mapping between a projective space and its dual
C:PM — (PM)*,

In the homogeneous description, such a mapping is given by a linear mapping (given
uniquely up to a non-zero scalar factor) between the vector sp¥cé and its dual; if
a* = [a*], v = [v], anda™ = C(v), then the correlatiof is represented by a matr&
such thau* = (Cv)".
Any correlationC defines its adjoint correlation

being represented by the mat@¥ transposed of . An important class of correlations is
provided byinvolutory correlationsi.e., correlations identical to their adjoints. Matrices of
such correlations must satisfy the condition tat= +C.

When the matrix of the correlation is symmetric, then the correlation is cpétity;
we denote it byP. The imageP (v) of a pointv = [v] € P¥ is called the polar hyperplane
of v; it consists of points = [x] satisfying equatiorfPv|x) = O.

Any polarizationP defines the corresponding quadric hypersuri@ee which consists
of points belonging to their polar hyperplanesc P(x); in the homogeneous description,
the quadric is given by equatid®x|x) = 0.

Example 1.3. Consider the polarization whose quadric is the standard sphere of radius 1
centered at the origin:

Op=S""1=-(xcEM3 %=1}

Then the polar hyperplane of a poinis the hyperplane orthogonali#@nd passing through

the pointy/ (v - v) (see Fig. 2). The polar of the origin is the hyperplane at infinity, therefore
this polarization is an affine mapping, i.e., it maps parallel lines into co-parallel subspaces
(of co-dimension 2).
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2. The backward representation of the quadrilateral lattice

In this section we define the backward data H;, Qij of the quadrilateral lattice. It
turns out that the relation between the standard forwardXiatd;, Qj and the backward
data is given in terms of the-function, which is one of central objects of the soliton theory.

The backward tangent vectaXs and the backward Lamé coefficier¥s, i = 1,..., N
are defined with the help of the backward difference operatar= 1 — Tflz

Ak = (T H)X;, o AiX = H(T; X)), (2.1)

the backward Lamé coefficients are again chosen in such a way (see Fig. 3) that the
variation ofX ; is proportional taX; only. We define the backward rotation coefficie@t;;
as the corresponding proportionality factors

AiX;=(T7'0pX:, or AX;=(TX)Qj, i #j. (2.2)

Comparing Egs. (1.6) and (2.2) we see immediately that the new fun@pmtisfy the
MQL equations (1.5) as well. Moreover, the new scaling factrsatisfy the following
system of linear equations:

AjH = (T;0\)H;, i # ], (2.3)

whose compatibility condition gives again the MQL equations (1.5).
An easy consequence of Egs. (2.1)—(2.3) is the following, obvious from a geometric point
of view observation.

Proposition 2.1. The vector functio : ZV¥ — RM representing a quadrilateral lattice
satisfies the backward Laplace equation

AiAjE = (TTHADAE + (T YADA R, i # (2.4)
where, in the notation of this section

. AH

Aj = L (2.5)

i

Fig. 3. Definition of the backward data.
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The forward and backward rotation coefficiettg andQjj describe the same lattigerom
different points of view, therefore one can expect their interrelation. Indeed, defining the
functionsp; : Z¥ — R as the proportionality factors betwe&hn and T X; (both vectors

are proportional ta\;x):

- 1 )
Xl :_pl(]‘lxl)v nHl =__Hl7 l =17-"5N7 (26)
we have the following proposition.

Proposition 2.2. The forward and backward data of the latti€eare related through the
following formulas:

p;iT; Qi = piT; Qjis @.7)
and the factorg; are first potentials satisfying equations

T; pi
SO (O 0, i # 2.9)

]

Proof. Using Egs. (1.4), (2.2) and (2.6), we obtain
Xi = —piTiX; = 2= A= (100 0i) (X + (T, QX)) = “-(T, 01X,
jPi Pj
which, by comparing coefficients in front of the vectdfs, X ;, leads to Egs. (2.7) and
(2.8). O

Remark. Since Qjj and Qij are both solutions of the MQL equatiof$.5), then Eqs.
(2.6)—(2.8)describe a special symmetry transformation of E5), first found in[25]
without any associated geometric meaning

The RHS of Eq. (2.8) is symmetric with respect to the interchangeanfd j, which
implies the existence of a potentiat Z¥ — R, such that

Tit
T
therefore, Eq. (2.8) defines the second potential
(TiTjo)t . )
— =1 (T; O;)(T; Qy), . 2.10
Tro)(T;0) (T Q)T Qij), i#] ( )
The potentiak connecting the forward and backward data
Tj(z Qi) = Ti(x Qji), (2.11)
Ti(tX;) = tX;, (2.12)
'L'FIZ' = Tl('l,’Hl) (213)

is the famoug -functionof the quadrilateral lattice.
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Corollary 2.3 (The t-function representation of the MQL equation§)efiner;; by
5 = 70j. (2.14)
then Eq.(2.8) can be rewritten as
(T;Tjt)t = (T;0)Tjt — (Tii) T 7, (2.15)
and the MQL equationgl.5)take the form

(Tt = (kD) Tij + (Tk Tik) k.- (2.16)

Remark. Ther-function representation of the MQL equations was fourf{d ® using the
Miwa transformation of the -function representation of the Darboux equations

We notice that, for a given lattiog the forward datéX;, Qjj} are defined up to rescaling
by functionsa; (n;),

]

1 a;
X — a;X;, T;H; — ;T,'H,', T; Qij — a—l_TjQij, (2.17)
J

expressing the freedom in the definition of the vecm}@ on the initial curves. An analo-
gous freedom exists for the backward data

~ 1 - ~ ~ ~ b; ~
TiX,' e ITTI'X,', Hi — biHi, TjQij — b—l‘TjQij. (218)
J

1

The corresponding rescaling pf andr is, therefore, given by

N
pi — aib;pi, T— Tnci(ni), (2.19)
i=1
where
T. .
A (2.20)
Ci

Finally, we remark that the producT; Q;i)(7; Qjj), which appears in the definition of the
t-function, is the ratio of the areas of the two affine parallelogr#@t4;X ;, A;X;) and
P(X;,X ) (see Fig. 4).

Unlike the definitions of the forward and backward rotation coefficients, this product
is invariant with respect to their possible redefinitions given by Eq. (2.17). It can be seen
expressing the product, using Eq. (1.7), in terms of the datas follows:

(T; Ai) (T Aji)

T 00 = a0y (1,45 1 D)

(2.21)

Observe finally that Eq. (2.7) leads to
(T; Qi)(T; Qi) = (T; Qi) (T; Oy)), (2.22)
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Fig. 4. Areas of two parallelograms.

whichimplies that the discussed product quantity is also the ratio of the areas of the backward
parallelograms? (A, T;T; X ;, A, T, T, X;) and P(T; T;X j, T; T; X,)).

3. Hyperplane lattices

Consider a latticy* : ZV¥ — (PM)*, N < M, in the space of hyperplanes B,
which we call thehyperplane latticeThe spac&P)*, called also dual space B, has
a natural projective structure and a priori one expects that the algebraic description of the
quadrilateral lattices in the dual space be the same like that of quadrilateral point lattices and,
therefore, the considerations of the previous sections can be applied to hyperplane lattices
without essential modifications. However, this section is devoted to investigate hyperplane
lattices from a geometric point of view and to make clear the geometric content of their
algebraic description.

3.1. Quadrilateral hyperplane lattices

The basic property of quadrilateral lattices, i.e., the planarity of their elementary quadri-
laterals, when applied to hyperplane lattices, can be formulated as follows.

Definition 3.1. The hyperplane latticg* : ZV¥ — (PM)* is quadrilateral if, for any
i,j=1...,N,i# j, the hyperpland;T;y* contains the subspagé N 7;y* N T} y*.

To explain this definition notice that if the hyperplane lattice is given in homogeneous
coordinates by the functiopr* : ZV¥ — (RM+1)*\ {0*}, then Definition 3.1 states that the
four co-vectorsT; T;y*, T;y*, T;y*, andy* are linearly dependent. i;y*, T;y*, y* are
linearly independent, then the co-vec®;y* representing the hyperplarfeT;y* is a
linear combination of the co-vectoy$, T;y* andT;y*,

LTjy" =aliy* + BT;y" +yy" (3.1)
This equation can be transformed into the Laplace equation

Ailjy" = (TIADAiY* + (T3 ADA ;Y™ + Chjyy™, i # . (3.2)
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In the affine gauge, the coefficienis 8 andy of the decomposition (3.1) are subjected to
the constraint

a+p+y=1 (3.3)
and Eq. (3.2) reduces to

AN = (TADAT + (T ADAY, i # ). (3.4)

Remark. In our considerations we always assume we deal with generic lattices, i.e., that
the hyperplaney* and its forward neighbordyy*, ..., Ty y* (and backward neighbors
Tfly*, ceey Tl\}ly*) are in general position, i.e., their equations are linearly independent.
In consequence, the intersectiohn T1y* N --- N Tyy* (@ndy* N 77 ty* N N Ty ty%)

is a linear subspace @ of co-dimension Nof dimensionV — N).

Example 3.2. Given a two-dimensional quadrilateral lattigein the three-dimensional
projective space, define the lattigé of the hyperplanes passing throughTix andT>x.
Because of the planarity of the elementary quadrilaterals, df is easy to see that the
four hyperplanes™, Tiy*, Toy* andTiToy* intersect in the poinTy T>x. Therefore, the
(hyper)plane lattice™ is quadrilateral.

Example 3.3. Correlations map quadrilateral point lattices into quadrilateral hyperplane
lattices.

3.2. Dual systems

We first recall that a quadrilateral latti#éis called parallel to the quadrilateral latti¢e
[18] (or obtained fronx via the Combescure transformation), if the tangents to both lattices
are parallel in the corresponding points;x’ ~ A;x. In consequence, the scaled tangent
vectorsX of the latticex’ can be chosen to be equal to those of the lafficeX| = X;;
then the rotation coefficients of both lattices coincide as w@jl:= Qj}, and the Lamé
coefficientsH; and H are solutions of the same equation.

In this section we will learn how to construct quadrilateral hyperplane lattices using
systems of parallel quadrilateral point lattices.

/
i

Definition 3.4. Consider a system di parallel point lattices i\” X, k = 1,..., M,
whose corresponding vectors are linearly independent. Den@ta)b)k =1,...,M,the
system of hyperplane lattices uniquely defined by the propertie§§};;a|basses through
X and is spanned by the vectarg), [ # k, i.e.,

FlXa) = du. (3.5)

We call such a system of hyperplane latticesdbal systento the system of parallel point
Iatticesf(k).
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The aim of this section is to prove that the hyperplane Iattj’t}kgsare quadrilateral hyper-
plane lattices.

Definition 3.5. Fixa basis{ék}}(‘il inthe ambient spadg¥ and arrange the parallel system
of point lattices in thematrix Q of the system

Q=Xw,.... X)) (3.6)

equivalently, the matrif represents a linear operator

M
Q=) xw e,
k=1

where{ée;}!7 , is the dual basis ofe;}!.,, i.e., (€;1€;) = du.

Corollary 3.6. The components of the dual systgfy in the basisie; }}, are given by
the rows of the matri2 .

Let us arrange the coefficient ), i =1,..., N, k=1, ..., M, into the row-vectors
M
X} = (Hi,.... Hiny).  XF =) Hiwe;.
k=1
thenX?, i = 1,..., N, form a (co)vector valued solution of the adjoint linear problem

(1.6) and the matrif2 can be found from equations
AQ =X, ® (T X)). (3.7)

It was shown in [27] that the matr plays a relevant role in the theory of transformations
of quadrilateral lattices.

The following theorem, which contains, as particular cases, all the classical transforma-
tions of a quadrilateral lattice [18] was proven in [27].

Theorem 3.7. Let Qj;, X;, X} andQ be defined as above; then the following functions
Qi = 0 — (X3IQHX)) (3.8)

solve the MQL equations, the vectdts = Q1X;, X:/ = X:Q1 are solutions of the

linear systemg1.4) and (1.6¥or Q{j, and the corresponding potential

AR =X]® (T;X;) (3.9)
is given by
Q=c-Q1 (3.10)

where C is a constant operator
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Denote byx ;, the rows of€2, then
M
Q=) & e

k=1

Lemma 3.8. The rows'r”{k) of the matrixQ2 represent a system of co-parallel quadrilateral
hyperplane lattices, which we call the adjoint system;to

Proof. Let us rewrite Eq. (3.7) in a backward form

AR =X ® (17X, (3.11)
which gives
AiXfy = (T H )X, (3.12)

WhereHl.*(k) is thekth component of the vectd(;. Comparing Egs. (1.4), (2.1) and (2.3)
we infer that the co-vectov‘é’("k) satisfy the backward Laplace equations

AiAjEGy = (T AR ) AiX Gy + (T AR (DA XG0 # (3.13)
where
—
e :AJHi(k)
ij (k) H* ’

i(k)

and therefore (see Proposition 2.1) also the forward Laplace equations.
Finally, since&iiz‘k) ~ A;x{;, then the corresponding co-dimension 2 subspages)
T.‘le‘k) andxz“ al Ti_lx* of hyperplane lattices are co-parallel in the sense of Definition

i )] O}
1.1 (|

Remark. Given the parallel systemyy), kK = 1, ..., M, the corresponding adjoint system
J?’("k) is given up to a fixed basis used to deffagon the contrary, the dual system of
hyperplane lattice§ ;, is given uniquely

Corollary 3.9. Notice that the forward rotation coefficients of the systep are the
backward rotation coefficients of the systém D Qi = Q,’j

Combining the above lemma with Theorem 3.7, we get the following theorem.

Theorem 3.10. The hyperplane Iatticeﬁz"k) of the dual system to the system of parallel
quadrilateral point latticest x, are co-parallel quadrilateral hyperplane lattices
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3.3. The adjoint and conjugate lattices

Definition 3.11. The quadrilateral point latticé : Z" — AM and the quadrilateral hyper-
plane latticec™ : ZV — (AM)* are called adjoint if the forward rotation coefficients of the
point lattice are backward rotation coefficients of the hyperplane lattice.

Corollary 3.12. Equivalently, the forward rotation coefficients of the hyperplane lattice
are backward rotation coefficients of its adjoint point lattice

Definition 3.13. The point latticex : Z¥ — PM and the hyperplane latticg’ : ZV —

(PM)* are called conjugate if there exists a one-to-one correspondence between both lattices
such that the points of the point lattice belong to the corresponding hyperplarfesf the
hyperplane lattice.

Corollary 3.14. Observe that this notion is self-dual in the sense of the standard duality
betweerP” = ((PM)*)* and (PM)*.

Remark. We are interested only in a situation in which x is a quadrilateral point lattice
and y* is a quadrilateral hyperplane lattice

The notion of conjugacy between point lattices and hyperplane lattices is the natural
generalization of the notion of conjugacy between point lattices and rectilinear congruences
(line lattices with any two neighboring lines coplanar) introduced in [18]. As it was also
shown in [18], the lattices parallel 6 describe transversal congruences conjugate to the
guadrilateral point lattice. Moreover, the tangent congruences can also be obtained in this
way via singular limits.

Corollary 3.15. Given a quadrilateral point lattice x ii®” and given(M — 1) linearly
independent congruences conjugate to x, then the hyperplane lattamnjugate to x and
spanned by the lines of these congruences is quadrilateral

3.4. The complementary lattice

The linear system (1.4) describes the variation of the normalized tangent v&gtofs
a quadrilateral point lattice in directiorjs# i, and leads to the MQL equations (1.5). In
this section we study the variation of the vectisin the correspondinéth directions of
the lattice. Discussion of such variations naturally leads to the definition of a hyperplane
lattice, which will be called theomplementariattice.

Consider the quadrilateral lattice : Z¥ — R with the given set of tangent vec-
torsX;, i = 1,..., N, and the corresponding set of the Lamé and rotation coefficients
H;, Qj,i,j =1,..., N, satisfying Egs. (1.3)—(1.6). Let us find — N new solutions
Qai,a=N+1....,M,i=1,..., N, of the adjoint linear system (1.6), i.e.,

A; Qa = (T; Qai) Qi (3.14)
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and let us defin@f — N vectorsX,, a =N +1,..., M, via an analog of Eq. (1.3):

Ai X, = (T; Qad X (3.15)

Remark. ThevectorX,, a = N+1, ..., M,arethe Combescure transforms of the lattice
x, but it was not accidental that we gave to E¢(&14) and (3.15)he form of the Darboux
equationg1.5)and of the linear problenil.4).

Whenthe full setof vectoX,, k = 1, ..., M,islinearly independent, we obtain, in each
point of the latticex, a basis of the whole spaB&’ ; this type of basis along a quadrilateral
lattice has been considered already in [16] and can be callegktbaded basialong the
lattice. Byf/Z, k=1,...,M,we denote the dual basis (R )*:

(YiIXe) =8, k=1 M. (3.16)

The linear system (1.4) describes the decompositiof; ¥f;, i # j; let us decompose
T; X; in the full basis

M
AX;=P'X; — Z PiXy. (3.17)
ki k=1

We will study properties of the coefficiené)*, 15”-* and their relation to previously intro-
duced objects.

Proposition 3.16. The vectorsf/Z satisfy equations

AY, =(TY)PE, i#k i=1..N, k=1...M, (3.18)
M
~ % ~ %~ ~ % .
AY; =—(TY)PF— Y (LY)(TiQw), i=1...,N. (3.19)
keti k=1
Proof. Assume a decomposition af; Y, in the basisi;¥,, £ =1,..., M,
M
~ % ~ %
AY, =) THTY)), (3.20)
k=1
where

r¥, = (AY,|TiXy), i=1...,N, ke=1... M.
Using Eq. (3.16), we obtain that
T, = (V1A Xz), (3.21)

which, together with Egs. (1.4), (3.16)—(3.18), concludes the proof. O
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Corollary 3.17. Eg.(3.18)can be split into the standard backward linear problem
AY = (TY)P, i#j i=1....N, (3.22)

and the backward linear equations for the supplementary co-vectors
AY,=(TY)HPE, i=1... N, a=N+1,....M. (3.23)

The compatibility condition of these equations gives the Darboux equations for the backward

rotation coefficienta"ij?*, i#j=1,...,N,

AP = (TiPPOPE, k#i, j=1,...,N, (3.24)

and the supplementary backward linear equations

APL=(TiPHP;, i#j=1...N, a=N+1....M. (3.25)

ifja ias
Corollary 3.18. The compatibility of Eqq3.18)and(3.19)gives

I-:’i*zﬂQii—PiT, i=1...,N, (3.26)

where Qji (and similarlyﬁ“*) are potentials defined ifiL6] for any solution of the MQL
system by the equations

AjQi = (TjQQji. AjPy=(T;PHP;,  j#i. (3.27)

Moreover, from the same compatibility, we obtain the following equation:
M
AiQij+ AjPS — PFOj+ PRTTIPH+ Y PiOg=0, i#j.  (3.28)
ki, jik=1
To make the above considerations symmetric, we define a hyperplane lattice which has
% . Z

the vectory;, i = 1,..., N, as normalized backward tangent vectors, &idi # j =
1,..., N, as backward rotation coefficients.

Definition 3.19. Given the quadrilateral latticé : ZV — RM together with its extended
frame X, and its dualY,, k = 1,..., M, define thecomplementary latticef X as via
solution of the following compatible equations:

Ay = (TY)E, i=1,...,N, (3.29)

whereF"l.*, i =1,...,N,is asolution of the system (3.25), interpreted now as the adjoint
of the linear system (3.22):

AJFF=(T;PHF;, i#j=1.._N. (3.30)
Remark. The additional vectorsf’Z and functionsP*, a = N +1,.... M play a role

ia’
similar to that ofX, and Qa;.
By simple calculation one can obtain the following result.
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Proposition 3.20. The functions, = (y*|Xs), k =1, ..., M, satisfy equations

Ajvg = (T; Qidvi,  k # 1, (3.31)
Ajv; = Ff 4 PFv; — Zﬁiivk' (3.32)
ki
Similarly, functionss¥ = (¥ |¥), k = 1,...., M satisfy equations
At} = (Ti0F) P, k#1i, (3.33)
AT = (T Hy) — PF(T07) = ) (T3 Qi) (3.34)
ki

Finally, we present a theorem which can be proved by simple algebra using formulas of
Corollaries 3.17 and 3.18, and which contains a geometric characterization of the comple-
mentary lattice.

Theorem 3.21. Consider the quadrilateral lattic& with the extended fram&, k =
1,..., M, and consider a scalar solution, of the extended linear systg®31).The hy-
perplane latticey™ = Z,’{”:lka/z, whose hyperplanes pass through the M poitfs; ) X,
is a complementary lattice &f Its backward Lamé coefficienf?, i=1...,N,canbe
obtained via formula$3.32).

Remark. In the continuous limit, fov = M = 3, and with the identification of planes in
[E3 as pointgvia polarity), our complementary hyperplane lattices reduce to the “systémes
complémentaires d'un systéme conjugué” considered by Darf@hapter Il1].

4. The symmetric lattice

Definition 4.1. A gquadrilateral latticex is symmetridff its forward rotation coefficients
are its backward rotation coefficients as well, i.e.,

Qij = Qjj. (4.1)

The considerations of Section 2 imply the following characterization.

Proposition 4.2. A quadrilateral lattice is symmetric iff, for a given set of rotation coeffi-
cientsQjj, there exists a-function of the lattice such that

Ti(z Q) =T;j(tQy), i# ], (4.2)
or equivalently, in terms of the corresponding first potentjals

0iTi Qji = p,; T; Qjj. (4.3)
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Remark. Due to Eqs(2.17)—(2.19)the above definition is independent of the particular
choice of the rotation coefficients;;.
It turns out to the following proposition.

Proposition 4.3. The symmetric lattice is an integrable reduction of the quadrilateral
lattice.

Proof. Recall that, from a geometric point of view, the integrability of a reduction means
that if the reduction condition is satisfied on the initial surfaces, then it must propagate in
the construction of the lattice.

As it was shown in [13] the solutio@j; of the MQL equations (1.5) is fixed by the

values of the rotation coefficien@i(jo) on the initial surfaces. Therefore,@-(-o) = Qi(jo) on

j
the initial surfaces, then they are eq@ = Qjj in the whole lattice, since the backward
rotation coefficientg)j satisfy the same equations @g.

The algebraic content of this result is instead expressed by the following equation:

TiCP = CJ + (T Q) Cig — (i QiClr, i # j #Kk, (4.4)
where
CP = piTi Qji — p;T; Qi (4.5)

Eq. (4.4) is a simple consequence of the MQL equations (1.5) and of Eq. (2.8). Again we
see that if the constraint (4.2) is satisfied on the initial surfaces (the RHS of Eq. (4.4) is
zero), then it propagates transversally through the whole lattice (the LHS of Eq. (4.4) is
zero). O

There exists an interesting geometric characterization of the symmetric lattice, which
follows from the interpretation of the conditiadij = Qj.

Lemma 4.4. The forward and backward rotation coefficients describing an elementary
quadrilateral {x, T;x, T;x, T; T;x} are equal if and only if the parallelogram(7;X;,
T;X;)andP(A;X;, A;X;) of the quadrilateral are similar

Proof. The quadrilateral with the initial vertex is described by the following rotation coef-
ficients:T; Qji, T; Qjj, T; Oji andT; Qj connected by Eq. (2.7). Since

AiXj=—(T; 0i)pi T: X, (4.6)

then the parallelogramB(7; X;, T;X ;) andP (A, X ;, A ; X;) are similar (see Fig. 5) if and
only if

p;(T; Qi) = pi (T; Qji), 4.7)

which means, due to (2.7), that the backward and forwgdare equal. O
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Xi .": .": LX j
D ¢ X I*

Fig. 5. Similarity of two parallelograms.

Proposition 4.5. A quadrilateral lattice is symmetric iff, for a given set of the forward
tangent vectorX; of the lattice, there exists a complementary set of the backward tangent
vectorsX; such that the parallelogramB(7; X;, T;X ;) and P(A; X j, A; X;) are similar.

Remark. Due to Eqs(2.17)—(2.19}he above characterization of the symmetric lattice is
independent of a particular choice of the vectdfrs

Integrability of the symmetric lattice can be formulated as follows.

Corollary 4.6. If the system of initial quadrilateral surfaces admits a compatible set of
forward—backward data such tha&(7;X;, 7,X ;) and P(A; X ;, A;X;) are similar, then
the similarity of the parallelograms holds in the whole quadrilateral lattice

Remark. Notice that in order to define the symmetric lattice, we need to know what similar
parallelograms are

The solution of the MQL equations for an-dimensional symmetric lattice depends on

N
(2)
arbitrary functions of two variables, i.e., one-half of the arbitrary functions parametrizing
the solution of the MQL equations for genemé-dimensional quadrilateral lattice (see
Section 1.1). Given a symmetric lattice equipped with a compatible set of forward and

backward data, denote the similarity factor between the parallelog?ami i T/X j)and
P(A X, AjX)) byo'(ij) = 0ji)

AXj=opTiXi AXi=onTiX;,  i#]. (4.8)
then
oy = —piTi Qji = —p; T; Qjj.- (4.9)

Therefore, to constructthe initiél j)-surface of asymmetric lattice, one gives two arbitrary
intersectingi-and j-curves and, on them, the tangent vectﬁrfg), X;O) and the factors

pfo), p;m; one finally givesjj) = ojiy as functions ofn;, n;).
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The descriptions of the symmetric lattice presented above are not explicit. Indeed they
involve statements about the existence of suitable potentials. There exists, however, another
characterization of the symmetric lattice in terms of the forward rotation coefficients only.

Theorem4.7. A quadrilateral lattice is symmetric iff, for different indicey, k, its rotation
coefficients satisfy the following constraint:

(T; Qi) (Tj Qk) (T Qik) = (T; Qi) (T; Qi) (Tx Qjk)- (4.10)

In the proof we will use two simple facts (see Egs. (4.11), (4.12) and (4.15)) valid for a
generic quadrilateral lattice.

For a given set of the compatible forward and backward rotation coeffiofaned Qjj,
define functionRjj as

Rj =~ Qi , (4.11)
T Qj
then from Eq. (2.7) it follows that
1
Rij = —. 4.12
=R (4.12)
The MQL equations (1.5) can be written as
TiT; Qij = T, Qjj + (TiTj Qi) (T Qx;). (4.13)
which implies
T T; Qij — T; O
TiT; Qi = —I =3 J=1 4.14
klj Qik Tj ij ( )

Interchanging the indicesandk in the second equation and eliminatifig’; Qjj, we obtain

T T; Oik _ 1+ (Ti Qi) (T Qi) / Tk Qik
Tk Qik 1—(T; 0k)(Tx Qi)

(4.15)

Proof. The implication (4.3)=(4.10) is obvious. Let us concentrate on the opposite im-
plication.
Let us start from any set of backward rotation coefficie@g related with Qjj via
Egs. (2.6) and (2.7), the condition (4.10) implies
(T Q) (T Qi) _ (Tijk)ETjQij)’ (4.16)
T Qik T Qik

which, together with (4.15) and with the corresponding formula satisfied by the backward
rotation coeﬁicients@ij, gives, for; different fromi andk,

T;Rik = Rik, (4.17)
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i.e., Ri is a function ofz; andn; only. This together with condition (4.10) written in terms
of Rjj as

RjjRkRki =1 (4.18)
and with Eq. (4.12) implies the existence of functiang:;) such that
ai(n;)
Ri(nj.n;) = ) 4.19
ij (i n’j) a;(n)) ( )
We use the functions; to redefine the potentials; and obtain new backward rotation
coefficientsQj satisfyingQj = QOjj. 0

The above characterization of the symmetric lattice works only when the dimension of
the lattice is greater than 2. In the following proposition we present an analogous criterion
for N = 2, which can be useful, e.g., to check directly if the initial quadrilateral surfaces
are symmetric.

Proposition 4.8. A two-dimensional quadrilateral lattice is symmetric iff the function
_Ti0j
rij = >
T; Oji
satisfies equation
(LiTjriprii  Ti(A - T 05 T; Qy)
(Tiri)(Tjri)  TjA—T;Q;iT; Qi)

i #J, (4.20)

(4.21)

Proof. The implication from (4.3) to (4.21) is trivial. To prove that the condition (4.21) is
sufficient, we notice that, in terms &, it can be rewritten as

(T;T; Rij) Rij = (T; Rij) (T} Rjj), (4.22)
which leads again to
ai\n;
Rij(nj,nj) = i) : (4.23)
aj (nj) 0

Remark. In order to check the symmetry condition for the initial surfaces we use the
criterion (4.21)supplemented bi@.10)in the points where the initial surfaces meet

As we have anticipated, the constraints discussed in this paper allow one to establish a
connection between quadrilateral point lattices and their duals, the quadrilateral hyperplane
lattices. The following proposition describes this connection in the case of the symmetry
constraint.

Proposition 4.9. Given a system of parallel quadrilateral Iattice*é;(k)},’y:l and the asso-
ciated matrixQ defined with respect to an orthonormal baﬁ?@},ﬂ”zl, e - €, = 8, then
the following properties are equivalent.
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1. The matrixQ2 of the system is symmetric
Q= (4.24)

2. The polar hyperplané®(x ) of the point latticex &, coincides with the hyperplane
lattice X

'P(f(k)) Zizkk), k=1...,M. (4.25)
3. The latticest ), k = 1,..., M, are symmetric. Furthermore, the associated tangent

vectorsX; and X are related in the following way

X! =pi(T;X), i=1,...,N. (4.26)

Proof. (1) < (2): The equivalence of (1) and (2) follows immediately from the definitions
of the potential matrix2 and of the polar transformatida.
(1) = (3). The application of\; to Eq. (4.24) gives the equations

X, @ TiX  =TXT®X], (4.27)

which imply equations’(iT = y;T; X} for some proportionality factor functiong. The

linear problem (1.4) and its adjoint (1.6) satisfied ¥y and X} imply that y; satisfy

Eq. (2.8) (which allows to identify; with p;) and lead to the symmetry condition (4.2).
(3) = (1): Following a similar strategy, one can show that

AQ-QT)=0 i=1...,N, (4.28)

which implies (4.24) up to some constant of integration. O
Corollary 4.10. A quadrilateral latticex is symmetric iff it is adjoint to its own polar

Remark. In the continuous limi(1.9), the symmetric quadrilateral lattice reduces to a
symmetric conjugate net, for which the rotation coefficigfjtssatisfying the Darboux
equationg1.10)are symmetric:

Bij = Bii- (4.29)
In fact, one should allow for the less restrictive condition

ai(u;)
aj(uj)

Bij(w) = Bji (), (4.30)

which giveq4.29)after an admissible rescaling of the data
The continuous limit of the criterio#.10)

Bij BikBri = Bii BkiBik (4.31)
is equivalent tq4.30).
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5. The circular lattice

The discrete analog of avi-dimensional orthogonal system of coordinates is the circular
lattice.

Definition 5.1. A quadrilateral lattice is circular if and only if any elementary quadrilateral
is inscribed in a circle.

An elementary characterization of circular quadrilaterals states that, if a circular quadri-
lateral is convex, then the sum of its opposite angles; iwhen the quadrilateral is skew,
then its opposite angles are equal. This leads to a convenient characterization of a circular
lattice [16].

Proposition 5.2. A quadrilateral lattice is circular if and only if

cosZ(X;, T;X ;) +cosZ(X;, TiX;) =0, (5.2)
or equivalently,

X, TX;+X;-TiX; =0, i+#]. (5.2)
It turns out to [8,16] give the following propostion.

Proposition 5.3. The circular lattice is an integrable reduction of the quadrilateral
lattice.

Proof. The proof consists in showing that the circularity property is an admissible con-
straint for the quadrilateral lattice, i.e., once imposed on the initial surfaces, it propagates
transversally through the lattice. This was shown in [8] using purely geometric means. The
algebraic proof is instead based on the following formula:

TiCi = Cj + (LT Qj)Cik + (T Tk Qi) Ci, i # j # k #1, (5.3)
where
C{jD =X; TX;+X;, TiX;, i#], (5.4)

which is a direct consequence of Egs. (1.4) and (1.5). We see that if the circularity con-
straint (5.2) is satisfied on the initial surfaces (the RHS of (5.3) is zero), then it propagates
transversally through the lattice (the LHS of (5.3) is zero). O

Corollary 5.4.
1. The circularity constrain{5.2)implies the following formul§l6] :

TiIX,1?
> =1 (T Qj)(Ti Qji), (5.5)
1X
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which, compared with Eqg2.8)—(2.10),allows to fix, without loss of generality, the

backward formulation of the circular lattice in the following way:
Tit ~ 1 T
Xil?=pi=— = TiXilP=— = (5.6)
T oi Tt

2. The circularity constraint(5.2), written in terms of the backward data of the lattice,
reads as follows:

éi? = X,’ -Ti_lij +Xj 'Tj_lii =0. (57)

Proof.
1. Eq. (5.6) is a straightforward consequence of Eq. (5.2) and has been found in [16].
2. Eq. (5.7) follows from the equalities

Ci = pipj ATX) - (T X)) + (TODIT X2 + (T O T X )
= pipj (L= (T; Q) (T; Q) T; T; Gy,

The first equality follows from rewritingci? in terms of the backward data; the second
equality follows from equations

TTiXi = L= (T;0)(T; i) (TiXi + (0T X)), i # . (5.8)
which is a straightforward consequence of (2.2). O

Other two convenient characterizations of the circular lattice are contained in the follow-
ing result found in [25] and explained geometrically in [12].

Proposition 5.5. A quadrilateral latticex is circular iff the scalars
v = (T,i+§)Xl, i=1...,N (59)

solve the linear systefd.4) or, equivalently, iff the functiofx|? (the square of the norm of
x) satisfies the Laplace equati¢h.1) of x.

A distinguished subclass of circular lattices corresponds to the particular case in which
the lattice pointsc belong to the sphere of radius : |x| = R. In this case there exists,
like for the symmetric reduction, an elegant relation between point lattices and hyperplane
lattices.

Proposition 5.6. Given a system of parallel quadrilateral Iattice%(k)},’y:l and the asso-
ciated matrixQ2 of the system defined with respect to an orthonormal b{éﬂéil, the
following properties are equivalent

1. The matrix€2/R is orthogonal:

ee'=Q"Q=r%, Q"=r2Q1L (5.10)
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2. The polar hyperplan® (x 1)) coincides with the dual hyperplariézﬁk) :
PEw) = Ry, k=1... M. (5.11)
3. The quadrilateral latticeg x)/R, k = 1, ..., M, form an orthonormal basis:
Xo) %) = R%j, i,j=1..., M. (5.12)

In addition, the associated tangent vectdfs X7, i = 1,..., N, are related by the
following formulas:

X; = %T,{QX?‘T) - —%Q(Z}X?‘T), i=1,...,N, (5.13)
* 2 T .
TX:=--XIQ, i=1...N, (5.14)
pi
with
2 o2 AR
1Xil®=pi, TilX7] ZT, (5.15)
1

and satisfy the circularity constrair§b.2) and its adjoint

Ci* =X -T7'X3+ X3 - T7'X} =0. (5.16)

Proof. The equivalence between (1) and (2) and formula (5.12) is a straightforward con-
sequence of the definitions &, x ) andy,. Furthermore, the quadrilateral lattice on a
sphere is obviously circular, the circles being the intersections of the sphere with the planes
of the elementary quadrilaterals [12].

(1) = (3). Applying A, to Eq. (5.10) leads to

X ToX = -RQX, @ T3(XiQ"), i=1...,N, (5.17)

which implies that

X; = yTHQX]), (5.18)
* 1 T

X =—-—5—XQ, (5.19)
R2y;

for somey;. Using Eq. (3.7) in (5.18), one obtains

Vi

X' = 75
"1 pITiX] 2

QT X!, (5.20)

which together with (5.19) leads to identification of the factgrs

2 xP
CITX[12 T 2R?

Vi (5.21)
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Notice that Eq. (1.6) implies
T,T, X = (1— (T; 0)(T; Qi) N(TiX} + (T OiNT;X7), i#]. (5.22)

Application of the shift inj direction to Eqg. (5.20) and using the above identity leads to
equations

Tivi — vi(1—(T; Qj)(T; Qi) =0, (5.23)

viTi Qji + v, T; Qij + R*X; - X =0, (5.24)
the first of them allows for identificatiopy = 2y; R?, while the second gives the circularity
condition.

At last, Egs. (5.13) and (5.15) imply the following relation between the circularity prop-
erty and its dual:

1 T,'le’

Cj = —WTTiTjCi?*, (5.25)
which implies that also Eq. (5.16) is satisfied. The proof o&£8)) is similar and is left to
the reader. O

Corollary 5.7. Quadrilateral lattice in a sphere is conjugate to its own polar (with respect
to the sphere) hyperplane lattice

In the continuous limit, Eq. (5.2) become the orthogonality conditions
X;-X;=0, i#], (5.26)

and the circular lattice reduces to an orthogonal conjugate net.

6. d-invariant lattice

In this section we introduce and discuss a basic dimensional reduction of the quadrilateral
lattice, thed-invariant lattice characterized by the invariance of a certain natural frame
along the main diagonal of the lattice.

To do so, it is convenient to put this reduction in the natural framework of the theory of
transformations of the quadrilateral lattice discussed in great detail in [18].

From a quadrilateral latticeé : Z¥ — RM, one can easily construct a new quadrilateral
lattice just translating in some coordinate direction and combining this translation with
a Combescure transformation. If the translation takes place along the main diagonal, one
obtains the new quadrilateral lattice

x

C(T%), (6.1)

whereT = ]_[f\’lei is the total translation along the main diagonal &ql is the Combes-
cure transformation [18]. From the above definition it follows that

Ak = (TiH)X;, (6.2)
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where

X;=TX; (= 0j=TQ, (6.3)
and H; are solutions of

AjH; = (TiH) i, i # ], (6.4)
different fromTH,;.

To establish relations between quadrilateral lattiéemnd x, one uses the following
relations valid for generic quadrilateral lattices.

Lemma 6.1. For any subsel. = {iy, ..., iy} of the indicedl, 2, ..., N, let us define the
partial shift 7, = []-_,T;,, then

Xi+ D e (TL Qi) X if i¢L,
X, =] = _ (6.5)
TiX; —(T; QiDXi + D e (TL Qi) X, if i €L,

whereQj;i was defined ir§3.27).

Proof. We first prove by induction the caset L. For|L| = 1 the statement follows from
the linear problem (1.4). Wheh ¢ L andk # i and the upper part of the formula (6.5)
holds, then

TrowXi =TL(X; + (Tk Qik) X k)

=X, + (TLuwy Qi Xk + »_TL(Qic + (Te Qi) Que) X,
lel
and application of the Darboux equations (1.5) concludes the first part of the proof. Notice
that applying the shiftd; and7j in different order, we obtain the following generalized
Darboux equations

TLQk = Qi+ Y _(TLQit)Qu» i#k¢L. (6.6)
leL

To show the lower part of the formula (6.5) let us apply the shifto the upper part of it
obtaining

TromXi = TiXi + Y (Trop Qio) Xe + (TiZ(TL Qi@)Qli) X;. (6.7)
leL L
It remains to prove that for a generic lattice ang L,
TLQi = Qi + Y _(TLQit) Qui. (6.8)
L
which can be done, again, by simple induction with the help of Eq. (6.6). O

The quadrilateral latticg is characterized by the following property.
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Proposition 6.2. Letx : ZV — RM be a quadrilateral lattice and let : Z¥ — R be
its transformed quadrilateral latticé6.1). Then

N
X;=TX; =T,X; — (T, 0i)X; + > 0iXe, (6.9)
=1

and consequently,

A; Qi + A; Qi — Qi (T; Qi — Qi — 1) — Qij(Tj_léjj -0j+1

N
+ > QuQy=0, i#] (6.10)

0=1,0i,j

Proof. Eqg. (6.9) follows from Lemma 6.1 fok = {1, ..., N} and from (6.3). Eq. (6.10)
is the compatibility condition of Egs. (1.4) and (6.9). O

The fixed point of transformation (6.1) (and therefore an integrable reduction of the
guadrilateral lattice) is represented by the lattiéeghich are parallel to their translations
Tx : X = C(TX) or, equivalently, for whiclf X; = X;.

Definition 6.3. A quadrilateral lattices : ZV — RM is diagonally invariant g-invariant)
iff

TX; = X;. (6.11)

Remark. Eqg.(6.11)implies that
TQj = Qj. (6.12)

Remark. The d-invariant lattice can be described effectivelyNoy- 1 parameters since
it depends on the differences of the variables

X, =X;,(n1—no,n2—n3,...,AN_1— nN). (6.13)
Corollary 6.4. If x is d-invariant, therT'x is parallel tox.
A d-invariant lattice is characterized by the following property.

Proposition 6.5. Letx : ZV¥ — RM be a d-invariant lattice, then
N
AiXi = (T, 0i)Xi — Y _QuXe, (6.14)
=1
and consequently,

N
A Qi+ A; Qi — Qij(Ai Qi — A Q)+ D QuQrj =0. (6.15)

=140, ]
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Proof. Egs. (6.14) and (6.15) are a straightforward consequence of Egs. (6.9) and (6.10),
respectively. O

Remark. Formula(6.14)implies that the N-dimensional d-invariant lattice is effectively
contained in an N-dimensional subspaceRdf, therefore without loss of generality, we

can put in this sectiotv = M.
We present now the characterizatiorndeinvariant lattices in terms of hyperplane lattices.

Theorem 6.6. If the quadrilateral latticex : Z¥ — R is d-invariant, then its rotation
coefficientsDj; are also the backward rotation coefficients of its complementary lattice

P =0Qj, i#j=1....N. (6.16)

Proof. If x is quadrilateral, then comparison of the formula (6.14) with Egs. (3.17) and
(3.26) proves the statement. O

7. The Egorov lattice

Definition 7.1 ([33]). A quadrilateral lattice is &gorov latticeiff the internal angles cor-
responding to the verticeéx andT;x are right angles (see Fig. 6).

Since the opposite angles of the elementary quadrilaterals of the Egorov lattice sum up
to the flat angle we have the following result.

Corollary 7.2 ([33]). The Egorov lattice is circular.

Remark. The Egorov lattice constraint can be written algebraically in the form
X, T;X; =0, i#], (7.2)

which implies the circularity conditio(b.2).

Fig. 6. Egorov lattice.
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Corollary 7.3. The line(¥, 7;T;X) is a main diagonal of the circle defined by the points
X, T;x andT;x.

Proposition 7.4. The Egorov lattice is an integrable reduction of the quadrilateral lattice.

Proof. Define functionsCE by equation

CF =X, TX;, (7.2)
and notice the following identity:

TiC = Cf + (Tk Qi) C + (Ti Tk Q) Cig + (T; T 05i) Ci; (7.3)

valid for a generic quadrilateral lattice. In the case of the Egorov lattice we@ave 0,
and Eq. (7.3) shows that such constraint is admissible. O

Inthe previous sections we introduced two other basic integrable reductions of the quadri-
lateral lattice: the symmetric and tHénvariant lattices. We will show that the Egorov lattice
is symmetric and, foN = M, d-invariant.

Proposition 7.5. The Egorov lattice is symmetric

Proof. The linear problem (1.4) and the constraint (7.1) imply that

X, - X;+(T0i)X;-X; =0, i#],

which gives

(T; Q)IX ;1% = (T; Q) IXi %, i # j. (7.4)
Because the Egorov lattice is circular, théh |2 can be identified with the potentias,
therefore Eq. (7.4) leads to the symmetry constraint (4.3). O

Remark. Anequivalentform ofthe constraift.4)was used by Schigg5] in his derivation
of the Egorov lattice from the circular lattice

Remark. The symmetry and circularity constraints are not enough to obtain algebraically
the Egorov lattice. Indeed, consider a symmetric and circular lattice together with its tangent
vectorsX; and the corresponding rotation coefficier@g. The symmetry condition implies
the existence of a-function(we call itzS) such that the potentials® = 7;75/7S satisfy

pPTi Qi = pT; Q. (7.5)

The circularity condition, in turn, implies existence of dunction(we call it 7<) such that
the corresponding potentia]c§C are given by

pi = X%, (7.6)
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Egs. (2.17)—(2.19mply that the potential;al.C and,ol.S are connected by functions of single
variables

pC(n) = a;i(nj)p>(n), i=1,...,N. (7.7)

The Egorov lattice corresponds to the distinguished case in which wedqa=el, i =
1...,N.

Corollary 7.6. Inthe circular lattice|7;X;| = 1/|X;|, which implies that the parallelogram
P(X;, X ;) is anti-similar to the parallelogranP (7;X;, T; X ;). In the Egorov lattice the
parallelogramP (X;, X ;) is also anti-similar to the parallelogran® (A; X ;, A; X;).

For N = M the Egorov lattice exhibits thé-invariance property [34].

Proposition 7.7. The Egorov latticet : ZV — RY is d-invariant

Proof. The orthogonality conditions (7.1) imply that
Xi L (Y}XZ)(ZZV:]_,@#I', (78)
TX; L <TT21X€)2V=1.Z¢# (7.9)

where(Tng)fz\’:L#i is the linear space spanned [j&Xg}é\’zl, ¢ # i. In addition, the
planarity of the lattice implies that these two linear subspaces coincide, the¥fozned
TX;, which are orthogonal to the sani&y — 1)-dimensional linear subspace, must be
proportional:

TX; =aX;. (7.10)

Applying T to the linear system (1.4) and using (7.10), we infer that a;(n;) (= 1
without loss of generosity) anbQ;j = Qjj. O

We conclude this section considering the Egorov lattice from the point of view of the
parallel systent ) and of its connections with hyperplane lattices. The results are a straight-
forward consequence of Propositions 4.9 and 5.6 and of the definition of the Egorov lattice.

Proposition 7.8. Given a system of parallel quadrilateral lattic€§x)}, k = 1,..., M,
and the associated matrf2, the following properties are equivalent
1. The matrix2/R is symmetric and orthogonal:

Q' =RQl=Q= Q?=R?IL (7.11)

2. The polar hyperplane lattic®(x ) coincides with the dual hyperplane Iattitbﬁj:’("k)
and with the adjoint hyperplane lattice:

P(f(k)) = i(k) = Rzii?k), k=1...,M. (7.12)
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The continuous limit of Egs. (1.5), (4.2) and (5.2), namely Egs. (1.10), (4.29) and (5.26),
respectively, characterize submanifolds parametrized by Egorov systems of conjugate co-
ordinates (Egorov nets). Also, the continuous limit of (6.15) together with (4.29) leads to
the Lamé equations

N
% +0;Bi+ Y. BuBje=0. (7.13)

0=1,0i,j

which together with Egs. (1.10) and (4.29), provide the usual characterization of a Egorov
net. At last, thel-invariance properties (6.11) and (6.12) reduce to

N
> 0B =0, (7.14)
=1
N
> 0eX; =0, (7.15)
=1

implying that 8j = Bij(u1 — u2,...,uy—1 — uy). For N = 3, we recover a classical

characterization of the Egorov net [2,9].

8. 9 formulations of the reduction

In this section we prove that the distinguished reductions of the quadrilateral lattice
discussed in the previous sections are integrable via tieeluction method introduced in
[40] and generalized to a discrete context in [16]. For the sake of completeness, we first
summarize in Sections 8.1 and 8.2, théormulation of the quadrilateral lattice and the
main result of thé reduction theory applied to it.

Thed dressing method is a very convenient tool to construct integrable multidimensional
systems, together with large classes of solutions [7,38,39]. Consider the (by assumption,
uniquely solvable) matrin x M 3 problem

Bip(L) = d;n(A) —|—/R(A,A’)¢()J) dx Ad), A A eC, (8.1)
C
whered; = d/dx, the given rational function () (the normalization of (1)) describes
the singularities and the asymptotic behaviopadh the complex plane ang (i, ') is the
givenM x M matrix 3-datum; consider also the adjoimproblem:
" () = =) — /q&*(/\’)R(A’,/\) dr Add, A, A ecC. (8.2)
C

The aboveé problems imply the bilinear identity

. $5(M)p1(2) dr + [C[¢§(K)8;ﬂ1()») — (@m2())p1(M]dr Adh =0 (8.3)
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(whereC, is the circle with center at the origin and arbitrarily large radius, and the corre-
sponding integration is counter-clockwise), which involves the solutigrasde; of (8.1)
and (8.2) corresponding to the normalizatignsandrn, respectively.

The dependence of the x M matrices¢, ¢* andR on A andx’ : ¢ = ¢(X, L),
R = R(x, X, M, 1) will be omitted systematically throughout the paper.

In the following, we shall consider only the two basic solutign@.) and x (A, u) of
Eq. (8.1), corresponding, respectively, to the “canonical normalizatjos”’1 and to the
“simple pole normalization; = (» — u)~1 [22,23], together with the corresponding
solutions of the adjoint problem (8.2 (L) andx*(x, w).

8.1.  formulation of the quadrilateral lattice

It turns out that the MQL equations are integrable viadkdressing method [5,16] and
all the geometric quantities of the lattice have a distinguished role ird thisieme.

Proposition 8.1. LettheM x M 3-datum R depend on the lattice variable= (n1, ..., ny)
e Z" in the following way:

R(n; 1, }) = (g(n, 1) " Ro(h, )g(n, 1), (8.4)
N
gn.2) = [l + G —DPI™, (8.5)
k=1
whereRg(A, A') is an arbitrary function of. and)’, butconstantinnand;, i = 1,..., N,

are the usual ith projection matricesP; )jk = djjdik. Then the following results hald
1. The matrix functions

YO =g x (), Pr0) = Mg )T (8.6)
satisfy the following linear systems

AiiA) = (T; Qji)vi(A), i=1,...,N, jk=1....M, i #], (8.7)

A = (Tiyg () Q. i=1... N, jk=1....M, i#] (8.8)
respectively, wher@j; is the(ij)-component of the matrix Q defined by

Q= lim (x"G) = 1) = lim (I — ("7 (). (8.9)

2. The matrix function
¥ (ko ) = g(n3 W) x Gy (g (s )™ (8.10)

is connected to the canonically normalized solutions obtpeblem through the equa-
tions

Ay, ) = YW T (w), i=1....N, jok=1.. M. (8.11)
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Furthermore, the matrix function

Y h, ) = g(n; )t (h, p)(g(n, A) 7t (8.12)
is connected t@r (A, w) via
U, ) =Y, p) (8.13)

and the canonically normalized solutions of theroblem can be obtained frog(x, 1)
via the asymptoticf5]:

x*(n) = Ali_)moo[kx(k, W], x() = _,)Enoo[“X()" w)] (8.14)
and

T; xji (A, 0) = xji M) T; xii (0), Xi (0, 1) = —xi O T; xi (). (8.15)

Proof. The proof is standard in the philosophy of thenethod.
1. First, after defining the “long derivatives”

DifHA) =Aif+ A —=DPRT f, DfHA) = —Aif + (1 — 1)(T,~_1f)Pi,
one can verify that the functions

(Dix)(MPj — x ) P(Ti Q") P;,

Pi(Dfx*)(A) — Pj(Ti_lQ*T)PiX*()»), i #J,
wherleJf is the(ij)-component of the matriw* defined by

0" = lim (x*T() - 1), (8.16)

solve the homogeneous version of theroblems (8.1) and (8.2) and go to zero at
A — oo; therefore, uniqueness implies the equations

(Dix))P; = x WP QNP i # j, (8.17)

Pi(Dfx" (W) = Pi(T;7 Q) Pix* (). i # . (8.18)
or, equivalently, the equations

Ay (WP =y Q)P QNP i # j, (8.19)

PiAY* () = —Pi(T, P QNPT ™ (1), i # . (8.20)

These last two equations, written in components, coincide with (8.7) and (8.8), using
also the property

0*=-0, (8.21)

which is a direct consequence of the bilinear identity (8.3) fok) and x*(1). At
last, thex — oo limit of Eq. (8.17) implies that the coefficientg;; satisfy the MQL
equations (1.5).
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2. The proof of formulas (8.11) is conceptually similar. The function

D;i (x (A, ()™ — x M PiTrp(w), (8.22)
where
p(u) = lim Ax ()™ (8.23)

solves the homogeneous version of thproblem (8.1) and goes to zerojat— oo,
therefore uniqueness implies the equation

D (x Ohs (@)™ = x W PiTip (). (8.24)
This equation is equivalent to

Ay (A, ) =y M) P Tip(w), (8.25)
whose component form reduces to (8.11), taking account of the formulas

p(u) =9 (W),  ¢* (W) = —¥ (), (8.26)

which are obtained from the bilinear identity (8.3) fptA, 1), x*(1) and x*(x, u),
x (1), respectively. Atlast, the bilinear identity (8.3) for= (A—u) ™1, o = A —p/) 1
givesy*(u', u) = x(u, u') or, equivalently, Eq. (8.13); furthermore, Egs. (8.13), (8.23)
and (8.26) lead to Egs. (8.14) and (8.24), whichwhen evaluategdd, gives Eq. (8.15).

O

From the solutiong (1, i), v (1) andy * (1) of thed problem one can construct a system
{Xw), k = 1,..., M, of parallel quadrilateral lattices, together with the corresponding
tangent vectors and Lamé coefficients through the following matrix equations:

Q= / di A di/ du A dia MO (A, W) M*(1), (8.27)
C C

Xi= [@ndimGony,  X; = [ dundiGom o, (8.28)
C C

wherex ;) is theith column of matrix2, ¥; (1) is theith column of matrixy (1), Vi) is
theith row of matrixyr* (1), andM (1) andM* (1) are arbitrary\l x M matrices independent
of n.

Finally, the evaluation of Eq. (8.17) atthe distinguished pbiat 0 leads to the-function
representation (2.15) and (2.16) of the MQL lattice. Indeed,=at0, Eq. (8.17) reads

A; % (0) = xi (O T; Qji, (8.29)
xij (0) + xi (O)T; Qji = 0, (8.30)
and imply that

AigiO
W— (T; Qj)(T; Q). (8.31)
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Comparing Eq. (8.31) with Eq. (2.8) leads to the identification

Tt
Xi(0) = pi = - (8.32)

while Eq. (8.30) gives

%i (0) = — ’f”, i # . (8.33)

Itis also possible to expregs (0) andxi}" (0) in terms ofr andzjj. To do so, we remark that
the functionga(A) = T; x*(A)(I + (» — 1) P;)~ 1 satisfies Eq. (8.2) corresponding to the
forcing w8 (1) P; T; x *(0). The bilinear equation (8.3) with thigy and with¢1 (1) = x (1)
reduces to the following equation:

;0TI —P)+ P+ - P)Q" = (T;x*(0) P x (0), (8.34)

whoseii and(ij)-components read as

(Tixi )i (0 =1, (Tixi(O)xi(0) = Qj, (8.35)
implying that

ORI S ‘o= i 8.36

X“()_Ti_lpi_ g in()—T- (8.36)

8.2. d-reduction theory of the quadrilateral lattice

The above formulation allows one to look for reductions of the MQL at the simpler level
of the 3-datumR [16]. The particular form (8.4) of it implies the following proposition.

Proposition 8.2. The following linear constraint on the&-datumR(x, 1') :

RTOL Y = WIM2FO)RO), W)(F()) L (8.37)
gives rise to integrable reductions of the MQL. In form(8a37),

Fi() =A"HA) £ A0 (8.38)
and A(A) is an arbitrary diagonal matrix

The main implication of the constraint (8.37) is that the functidiir—1) F (1) satisfies
the adjointd problem (8.2), while the functiof ~1(1~1)¢*T (A1) satisfies thé problem
(8.1):

(T HF)) =T H3 F () + @) F ()
- / @ "W HFQW)RM, M) d Adi, (8.39)
C
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HETahHe Ty =@ F e T — o hasnoh
+ / ROGVYFEHe T/ H)ydy Adr/,  (8.40)
C

and these equations, through the bilinear identity (8.3), imply the non-local quadratic con-
straints:

/C dTOHF MG (L) di + [C BT H O FO)P () + (50" F)e ()
+oTHFM¥n()]da A dr =0, (8.41)

P*MF 0 He T da+ /C [6* (V@ F 10 e T (™

Coo
— @nONFTHe T
—¢*WF I HanhldaAadi = 0. (8.42)

Therefore, the constraint (8.37) establishes a non-trivial connection, whose nature depends
on the particular choice df (1) (or, better, ofA (1)), between the solutions of tligroblem

(8.1) and of its adjoint (8.2) or, equivalently, between quadrilateral lattices and their dual
objects, the quadrilateral hyperplane lattices. In the following, we shall identify the matrix
functionsA () which correspond to the symmetric, circular and Egorov lattices.

8.3.  formulation of the symmetric lattice
In this section we solve the symmetric lattice. We shall show that the following choice:

A\ = é = F.(0) =171 (8.43)

corresponds to the symmetric lattice reduction.

Proposition 8.3. Let F(1) = A1, then the following equations hold:

YT ) = gyt ah, (8.44)
T;

A = o, (8.45)

x1(0) = x(0), (8.46)

and Eqs(8.27) and (8.28allow to construct a system of symmetric lattices provided that

M*(A) = AA M (). (8.47)

Proof. We use the same strategy of the previduproofs. Comparing Eq. (8.39) with
Eq. (8.2) forn = (A — u)~1, one obtains

T Y = Apxt . (8.48)
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or equivalently, (8.44), using Egs. (8.11) and (8.13). Furthermore, one can verify that
Tix*(\)(I — (A~ — 1) P;) satisfies theéd equation (8.1) fom = T; x*(0) P;. Therefore,
taking account of the large asymptotics, one obtains the equation

Tix* WU — 0" =DP) =2 XN Tix* O PixT0™H = — PHx*(v),  (8.49)

whose (ij)-component gives (8.45), using Eqgs. (8.6) and (8.36). At last, Eq. (8.41) for
n = 1 gives directly (8.46), which can be immediately identified with the symmetry con-
straint (4.3), using Eqgs. (2.10), (8.32) and (8.33). Furthermore, Eqgs. (8.44) and (8.45) imply
Egs. (4.24) and (4.26), provided that one uses (8.47). O

8.4. 3 formulation of the circular lattice

It was shown in [16] that the following choice

A+1

AMN=-DU=F = =D

(8.50)
corresponds to the circular lattice reduction.

Proposition 8.4. Let F(A) = (A + 1)/A (1 — 1)), then the following equations hold:

x(0) + xT(0) =2 (M), (8.51)
X*0) + x*T(0) = 2x* (=D *T(-1), (8.52)
A+l ¢ g pmu+D) T -1
A O uT) = M)+ @ T A, (8.53)
A-1 ¢ 1. u(p —1) T, -1
= — -1 -1 8.54
At WA =T G X G =D T D, (8.54)
471, -Dx(1, -1 =1. (8.55)

Proof. Egs. (8.41) and (8.42) far = 1 give, respectively, Egs. (8.51) and (8.52). Consider
Eq. (8.39) fory = (A — )~ L, then Eq. (8.53) follows from the fact that its RHS satisfies
Eq. (8.41) as well. Analogous considerations lead to Eq. (8.54). At last Eq. (8.53), evaluated
atA = u = —1, gives the orthogonality condition (8.55). O

To show that the above formulas give rise to a circular lattice, consider the following
identification:

iy = Wu @, . YL w)T, (8.56)
Xi=@uQ, ..., v, Hiw = ¥, (8.57)
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Because of Eq. (8.32), the diagonal part of (8.51) leads to
Xi(0) = pi = |Xil%, (8.59)

while the off-diagonal part gives the circularity constraint (5.2). Evaluating Eq. (8.53) at
w = 0 and using Eq. (8.14), one obtains

A+1

Ty -1 T
AT = x(0,0) —2x " (Dx (@ r), 8.60
o —pX ¢ =x0n =20 Mx@ (8.60)
which, using Egs. (8.15) and (8.59), can be written in the following form:
r+1 - -
—— YR = T; Xk, k=1....M, 8.61
o l)lﬁ( )= xw + Tixw) - Xk (8.61)

which is thed formulation of the first point of Proposition 5.5. If, instead, we choose
w = A"l we obtain

A+1

-1 -1 _
= A)[Iﬂ(k DL A VaS) E AN GRS AC IS} (8.62)
which, through the identification (8.56), leads to
A+1 _ _
m[%k(k D)+ YT D] = x) x . (8.63)

This formula states that the scalar product of the two parallel latliggsx ). j # k.
such that

Nix(jy = (GHi)Xi,  Higy = ¥in(w) (8.64)

is equal to the sum of two scalar solutions of the Laplace equations (1.1) and (1.7) corre-
sponding, respectively, to the Lame coefficiefts;), H;x). If j = k, Eq. (8.63) reduces
to

20 +1)

% (p)I° = a—nvie AL, (8.65)

which is thed formulation of the second point of Proposition 8.44. Eq. (8.52) expresses
the circularity condition (5.16) for hyperplane lattices through the identification (8.56) and
Eq. (8.55) is the) formulation of Eq. (5.10), through the identification

Q=vy(l -1, R=2 (8.66)

In this case, both systenfig)} and{x{;,} are circular. We finally remark that Egs. (8.53)
and (8.54) contain all the other circular constraints for a suitable choicend ..

8.5. 3 formulation of thel-invariant lattice

Thed-invariant lattice, a distinguished reduction of the quadrilateral lattice, corresponds
to the following distributionab-datum:

RO, V) = 3i8(x — A)R(), (8.67)
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and is solved by the local problem
95 x(A) = x(MRM), (8.68)
T,RO) =[1+ (X —DPIRM[L+ 0. —DHP] L (8.69)
If N = M, from Eq. (8.69), the invariance property follows:
TR(L) = R(L), (8.70)

which implies that

Tx() = xA). (8.71)
Consequently,

Ty () = Ay @), (8.72)

Q= 0, (8.73)

To; = pi, (8.74)

and takingh = 1, we obtain formulae (6.11) and (6.12).
8.6. 8 formulation of the Egorov lattice

The Egorov lattice is circular and symmetric; therefore, the corresponding constraints
are satisfied simultaneously, i.e.,

- A+1 0\t MA1
|A’|_4A_2RT(A’_1,A_1):AR(A,A/)A’_lz(—+ ) R

AL —1) N =1
(8.75)
This implies the equation
200 — A
( ) R(x, M) =0, (8.76)

MA =D +D

which admits the distributional solution (8.67). Therefore,dtiermulation of the Egorov
lattice is given in terms of théocal & problem (8.68) and (8.69) in which tHedatum
satisfies the constraint

RT(™Y = X2R(). (8.77)

Because of this locality, the correspondifgeduction theory of Section 8.2 simplifies
considerably.
The constraint (8.77) implies that' (1 1) is a solution of the adjoin problem

KXW =—x"MRM), (8.78)
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and the corresponding quadratic constraint
3 (x T Hx () =0, (8.79)
together with the asymptotics lim. oo x T (A~ 1) x (1) = x T(0), imply that
XTOTHx0) = 1" (0). (8.80)

Evaluating this constraint at = 1 and using the identifications (8.57), its diagonal part
gives (8.59), while its off-diagonal part gives the Egorov constraint (7.1).
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